声纹模型-2020:ECAPA-TDNN

声纹识别技术基于深度学习快速发展,ECAPA-TDNN模型由比利时哥特大学在2020年提出,结合SE模块和通道注意机制,在VoxSRC2020比赛中取得优异成绩。百度PaddleSpeech的开源系统使用ECAPA-TDNN,实现低至0.95%的识别等错误率。
摘要由CSDN通过智能技术生成

声纹识别是指利用声音特征对说话人的身份进行识别的生物识别技术,已有几十年的发展历史,但直到深度学习兴起之后才开始广泛应用。目前声纹识别系统基本都是基于深度学习的方法,比如d-vector, x-vector, ResNet等,本文主要介绍主流的声纹识别模型Emphasized Channel Attention, Propagation and Aggregation in time delay neural network Based Speaker Verification(ECAPA-TDNN)。

ECAPA-TDNN由比利时哥特大学Desplanques等人于2020年提出,通过引入SE (squeeze-excitation)模块以及通道注意机制,该方案在国际声纹识别比赛(VoxSRC2020)中取得了第一名的成绩。百度旗下PaddleSpeech发布的开源声纹识别系统中就利用了ECAPA-TDNN提取声纹特征,识别等错误率(EER)低至0.95%。

​主流声纹模型ECAPA-TDNN - 知乎

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值