一、透视表
- pivot
- 透视表是一种可以对数据动态排布并且分类汇总的表格格式
通过index,coloumn,value信息,pivot函数可以对数据表进行重新重塑
其中行与列两个参数是必须要有的
例如:我想以学号作为索引,查看男女生的身高情况
df.pivot(index='ID',columns='Gender',values='Height').head()
另外pivot不是很灵活,下面这个更加常用
2. pivot_table
pivot_table有四个最重要的参数index、values、columns、aggfunc
其中columns是一个可选的参数,同index一样,它代表列的层次
以下例子会让四个值慢慢添加,注意比较区别
例如:以学号作为索引进行查看(index)
pd.pivot_table(df,index='ID').head()
- crosstab
交叉表示用于统计分组频率的特殊透视表
例如:我想统计相同住在同一个地方的男生或女生数量(街道和性别分组的频数)
pd.crosstab(index=df['Address'],columns=df['Gender']).head()