书生·浦语大模型第二期实战营(4)笔记

本文探讨了Finetune在适应下游任务中的重要性,介绍了增量训练和指令微调两种微调范式,以及如何通过如XTuner这样的工具进行实践,特别提到了LnternLM21.8B和多模态语言模型的应用.
摘要由CSDN通过智能技术生成

Finetune

为什么要微调

适应下游任务
在这里插入图片描述

两种微调范式

在这里插入图片描述在这里插入图片描述上面的是增量训练
下面的是指令微调

数据格式

在这里插入图片描述
在这里插入图片描述

微调方案

在这里插入图片描述
lora: 在基座模型的基础上再套用一个小模型

在这里插入图片描述

XTuner

简介

在这里插入图片描述
在这里插入图片描述

快速上手

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

LnternLM2 1.8B

在这里插入图片描述

多模态LLM

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值