【LibreOJ #3045.「ZJOI2019」开关】【生成函数】

题意

n n n个初始均处于关闭状态的开关,每个开关有一个权值 p i p_i pi,每一轮会随机选择一个开关并改变其状态,且抽中第 i i i个开关的概率为 p i ∑ p i \frac{p_i}{\sum{p_i}} pipi。问变为目标状态期望需要经过多少轮。
n ≤ 100 , ∑ p i ≤ 5 ∗ 1 0 4 n\le100,\sum{p_i}\le5*10^4 n100,pi5104

分析

F ( x ) F(x) F(x)表示经过 n n n轮后恰好变为目标状态的概率的 E G F EGF EGF G ( x ) G(x) G(x)表示经过 n n n轮后恰好回到初始状态的概率的 E G F EGF EGF,目标状态为 t i t_i ti,显然有 F ( x ) = ∏ i = 1 n e p i x + ( − 1 ) t i e − p i x 2 F(x)=\prod_{i=1}^n\frac{e^{p_ix}+(-1)^{t_i}e^{-p_ix}}{2} F(x)=i=1n2epix+(1)tiepix
G ( x ) = ∏ i = 1 n e p i x + e − p i x 2 G(x)=\prod_{i=1}^n\frac{e^{p_ix}+e^{-p_ix}}{2} G(x)=i=1n2epix+epix
H ( x ) H(x) H(x)为经过 n n n轮后第一次变为目标状态的概率的 E G F EGF EGF f ( x ) , g ( x ) , h ( x ) f(x),g(x),h(x) f(x),g(x),h(x)分别表示 F ( x ) , G ( x ) , H ( x ) F(x),G(x),H(x) F(x),G(x),H(x) O G F OGF OGF,那么有 f ( x ) = g ( x ) h ( x ) f(x)=g(x)h(x) f(x)=g(x)h(x)
从而得到 h ( x ) = f ( x ) g ( x ) h(x)=\frac{f(x)}{g(x)} h(x)=g(x)f(x)
显然我们要求的就是 h ′ ( 1 ) h'(1) h(1)
考虑如果知道 E G F EGF EGF怎么求 O G F OGF OGF,设 F ( x ) = ∑ a e v x F(x)=\sum ae^{vx} F(x)=aevx,则 f ( x ) = ∑ a 1 − v x f(x)=\sum \frac{a}{1-vx} f(x)=1vxa
于是我们可以先通过dp求出 F ( x ) F(x) F(x) G ( x ) G(x) G(x),那么 h ′ = ( f g ) ′ = f ′ g − f g ′ g 2 h'=(\frac{f}{g})'=\frac{f'g-fg'}{g^2} h=(gf)=g2fgfg
注意到 f ( x ) f(x) f(x) g ( x ) g(x) g(x)的分母中可能含有 ( 1 − x ) (1-x) (1x)的项,可以先把两边同乘 ( 1 − x ) (1-x) (1x),通过推导容易得到 ( 1 − x 1 − v x ) ′ ∣ x = 1 = 1 v − 1 (\frac{1-x}{1-vx})'\bigg|_{x=1}=\frac{1}{v-1} (1vx1x)x=1=v11
时间复杂度 O ( n ∑ p i ) O(n\sum p_i) O(npi)

代码

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>

typedef long long LL;

const int N=50005;
const int MOD=998244353;

int n,sum,F[N*2],G[N*2],t[N],p[N],tmp[N*2];

int ksm(int x,int y)
{
	int ans=1;
	while (y)
	{
		if (y&1) ans=(LL)ans*x%MOD;
		x=(LL)x*x%MOD;y>>=1;
	}
	return ans;
}

void solve()
{
	int inv=ksm(2,MOD-2);
	F[sum]=1;
	for (int i=1;i<=n;i++)
	{
		int x=inv,y=!t[i]?inv:MOD-inv;
		for (int j=0;j<=sum*2;j++)
		{
			tmp[j]=0;
			if (j>=p[i]) (tmp[j]+=(LL)x*F[j-p[i]]%MOD)%=MOD;
			if (j+p[i]<=sum*2) (tmp[j]+=(LL)y*F[j+p[i]]%MOD)%=MOD;
		}
		for (int j=0;j<=sum*2;j++) F[j]=tmp[j];
	}
	G[sum]=1;
	for (int i=1;i<=n;i++)
	{
		int x=inv,y=inv;
		for (int j=0;j<=sum*2;j++)
		{
			tmp[j]=0;
			if (j>=p[i]) (tmp[j]+=(LL)x*G[j-p[i]]%MOD)%=MOD;
			if (j+p[i]<=sum*2) (tmp[j]+=(LL)y*G[j+p[i]]%MOD)%=MOD;
		}
		for (int j=0;j<=sum*2;j++) G[j]=tmp[j];
	}
}

int calc()
{
	int inv=ksm(sum,MOD-2),f1=0,g1=0,f2=0,g2=0;
	for (int i=0;i<=sum*2;i++)
	{
		int x=(LL)(i-sum)*inv%MOD;
		x+=x<0?MOD:0;
		if (x==1) (f1+=F[i])%=MOD,(g1+=G[i])%=MOD;
		else (f2+=(LL)F[i]*ksm(x-1,MOD-2)%MOD)%=MOD,(g2+=(LL)G[i]*ksm(x-1,MOD-2)%MOD)%=MOD;
	}
	return (LL)((LL)f2*g1%MOD-(LL)f1*g2%MOD)*ksm((LL)g1*g1%MOD,MOD-2)%MOD;
}

int main()
{
	scanf("%d",&n);
	for (int i=1;i<=n;i++) scanf("%d",&t[i]);
	for (int i=1;i<=n;i++) scanf("%d",&p[i]),sum+=p[i];
	solve();
	printf("%d\n",(calc()+MOD)%MOD);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值