题意
给出一个无向图,问从点s出发到点e经过t条边有多少种不同的路径,不能走回头路。
n<=20,m<=60,t<=230
分析
一开始看:我擦这不就是个傻逼矩阵乘法题吗。
再一看:我擦居然不能回头,不会了2333
但是我们可以注意到边数并不多,于是有个很棒棒的idea就是对边进行dp然后矩阵乘法优化即可。
代码
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#define N 125
#define MOD 45989
using namespace std;
int n,m,t,sta,end,cnt,last[N],b[N],c[N];
struct arr{int a[N][N];}a;
struct edge{int to,next;}e[N];
void addedge(int u,int v)
{
e[++cnt].to=v;e[cnt].next=last[u];last[u]=cnt;
e[++cnt].to=u;e[cnt].next=last[v];last[v]=cnt;
}
void mul(arr &c,arr a,arr b)
{
memset(c.a,0,sizeof(c.a));
for (int i=1;i<=cnt;i++)
for (int j=1;j<=cnt;j++)
for (int k=1;k<=cnt;k++)
c.a[i][j]=(c.a[i][j]+a.a[i][k]*b.a[k][j]%MOD)%MOD;
}
arr ksm(arr x,int y)
{
arr ans=x;y--;
while (y)
{
if (y&1) mul(ans,ans,x);
mul(x,x,x);y>>=1;
}
return ans;
}
int main()
{
scanf("%d%d%d%d%d",&n,&m,&t,&sta,&end);
sta++;end++;cnt=1;
for (int i=1;i<=m;i++)
{
int x,y;
scanf("%d%d",&x,&y);
x++;y++;
addedge(x,y);
}
for (int i=2;i<=cnt;i++)
for (int j=2;j<=cnt;j++)
if (e[j].to==e[i^1].to&&i!=(j^1)) a.a[j][i]=1;
a=ksm(a,t-1);
for (int i=2;i<=cnt;i++)
if (e[i^1].to==sta) b[i]=1;
for (int j=1;j<=cnt;j++)
for (int k=1;k<=cnt;k++)
c[j]=(c[j]+b[k]*a.a[k][j]%MOD)%MOD;
int ans=0;
for (int i=2;i<=cnt;i++)
if (e[i].to==end) ans=(ans+c[i])%MOD;
printf("%d",ans);
return 0;
}