题意
已知一个长度为n的序列a1,a2,…,an。
对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p - sqrt(abs(i-j))
1<=n<=500000
分析
随手化简就可以得到p>=aj-ai+sqrt(|i-j|)
我们发现其实只要求max(aj+sqrt(|i-j|))就好了。不难发现这是有决策单调性的,那么就可以用整体二分来实现。
具体方法是二分一个中点mid,然后暴力求出mid的值,再把序列分成两半即可。
代码
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int N=500005;
int n,a[N],num[N];
double ans[N],f[N];
double get(int x,int y)
{
return a[x]+f[abs(y-x)];
}
void cdq(int l,int r,int L,int R)
{
if (l>r) return;
int mid=(l+r)/2,pos=0;double mx=0;
for (int i=L;i<=R&&i<=mid;i++)
if (get(i,mid)>mx) mx=get(i,mid),pos=i;
ans[num[mid]]=max(ans[num[mid]],mx);
cdq(l,mid-1,L,pos);cdq(mid+1,r,pos,R);
}
int main()
{
scanf("%d",&n);
for (int i=1;i<=n;i++) scanf("%d",&a[i]),f[i]=sqrt(i);
for (int i=1;i<=n;i++) num[i]=i;
cdq(1,n,1,n);
for (int i=1;i<=n/2;i++) swap(a[i],a[n-i+1]),swap(num[i],num[n-i+1]);
cdq(1,n,1,n);
for (int i=1;i<=n;i++) printf("%d\n",(int)ceil(ans[i]-a[n-i+1]));
return 0;
}