【BZOJ2739】—最远点(决策单调性+分治)

传送门

把环倍长,只考虑 i i i~ i + n i+n i+n的点

发现最远点满足决策单调性
分治求解就可以了

#include<bits/stdc++.h>
using namespace std;
#define ll long long
inline int read(){
	char ch=getchar();
	int res=0,f=1;
	while(!isdigit(ch)){if(ch=='-')f=-f;ch=getchar();}
	while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=getchar();
	return res*f;
}
const int N=500005;
inline double P(double x){
	return x*x;
}
struct point{
	double x,y;int idx;
	friend inline double dis(const point &a,const point &b){
		return P(a.x-b.x)+P(a.y-b.y);
	}
}p[N];
int T,n,ans[N];
inline bool comp(int now,int p1,int p2){
	ll x=dis(p[now],p[p1]),y=dis(p[now],p[p2]);
	if(p1>now+n||p1<now)x=-x;
	if(p2>now+n||p2<now)y=-y;
	return (x==y)?p[p1].idx>p[p2].idx:x<y;
}
inline void solve(int l,int r,int st,int des){
	int mid=(l+r)>>1,now=st;
	for(int i=st+1;i<=des;i++)if(comp(mid,now,i))now=i;
	ans[mid]=p[now].idx;
	if(l<mid)solve(l,mid-1,st,now);
	if(mid<r)solve(mid+1,r,now,des);
}
int main(){
	T=read();
	while(T--){
		n=read();
		for(int i=1;i<=n;i++){
			p[i].x=read(),p[i].y=read(),p[i].idx=i,p[i+n]=p[i];
		}
		solve(1,n,1,n*2);
		for(int i=1;i<=n;i++)cout<<ans[i]<<'\n';
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值