AtCoder Grand Contest 013 C - Ants on a Circle 乱搞

题意

在一个长度为L的环上有一群蚂蚁,每一只蚂蚁都有一个两两不同的坐标和行走方向(逆时针或顺时针)且行走速度均为1。当两只蚂蚁相撞时他们会一起反向,问T个时刻后每一只蚂蚁的位置。
1<=n<=100000,1<=T,L<=10^9

分析

两只蚂蚁相撞的情况实际可以看成是他们代替对方走了下去,也就是编号互换。所以我们可以得到T时刻后所有蚂蚁的坐标。
还有一个性质是所有蚂蚁的相对顺序始终不变,因为他们不会跨过对方。
于是,当有一只蚂蚁从0走到L-1时,坐标最小的蚂蚁的编号就会+1;反之,当有一只蚂蚁从L-1走到0时,编号为-1,于是我们就可以得到所有蚂蚁的坐标了。

代码

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;

const int N=100005;

int n,L,T,a[N],b[N];

int read()
{
    int x=0,f=1;char ch=getchar();
    while (ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while (ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}

int main()
{
    n=read();L=read();T=read();
    int s=1;
    for (int i=1;i<=n;i++)
    {
        int x=read(),w=read();
        if (w==1)
        {
            a[i]=(x+T)%L;
            if (T>=L-x) (s-=(T-L+x)/L+1)%=n;
        }
        else
        {
            a[i]=((x-T)%L+L)%L;
            if (T>=x+1) (s+=(T-x-1)/L+1)%=n;
        }
    }
    s=(s%n+n-1)%n+1;
    sort(a+1,a+n+1);
    for (int i=1;i<=n;i++) b[(s+i-2)%n+1]=a[i];
    for (int i=1;i<=n;i++) printf("%d\n",b[i]);
    return 0;
}
AtCoder Practice Contest #B - インタラクティブ練習 (Interactive Sorting) 是一道比较有趣的题目。它是一道交互式的排序题目,需要你与一个神秘程序进行交互,以便将一串无序的数字序列排序。 具体来说,这个神秘程序会给你一个长度为 $N$ 的数字序列,然后你需要通过询问它两个数字的大小关系,来逐步确定这个序列的排序顺序。每次询问之后,神秘程序都会告诉你两个数字的大小关系,比如第一个数字比第二个数字小,或者第二个数字比第一个数字小。你需要根据这个信息,来调整这个数字序列的顺序,然后再向神秘程序询问下一对数字的大小关系,以此类推,直到这个数字序列被完全排序为止。 在这个过程中,你需要注意以下几点: 1. 你最多只能向神秘程序询问 $Q$ 次。如果超过了这个次数,那么你的程序会被判定为错误。 2. 在每次询问之后,你需要及时更新数字序列的顺序。具体来说,如果神秘程序告诉你第 $i$ 个数字比第 $j$ 个数字小,那么你需要将这两个数字交换位置,以确保数字序列的顺序是正确的。如果你没有及时更新数字序列的顺序,那么你的程序也会被判定为错误。 3. 在询问的过程中,你需要注意避免重复询问。具体来说,如果你已经询问过第 $i$ 个数字和第 $j$ 个数字的大小关系了,那么你就不需要再次询问第 $j$ 个数字和第 $i$ 个数字的大小关系,因为它们的大小关系已经被确定了。 4. 在排序完成之后,你需要将排序结果按照从小到大的顺序输出。如果你输出的结果不正确,那么你的程序也会被判定为错误。 总的来说,这道题目需要你熟练掌握交互式程序设计的技巧,以及排序算法的实现方法。如果你能够熟练掌握这些技巧,那么就可以顺利地完成这道非传统题了。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值