题意
在一个长度为L的环上有一群蚂蚁,每一只蚂蚁都有一个两两不同的坐标和行走方向(逆时针或顺时针)且行走速度均为1。当两只蚂蚁相撞时他们会一起反向,问T个时刻后每一只蚂蚁的位置。
1<=n<=100000,1<=T,L<=10^9
分析
两只蚂蚁相撞的情况实际可以看成是他们代替对方走了下去,也就是编号互换。所以我们可以得到T时刻后所有蚂蚁的坐标。
还有一个性质是所有蚂蚁的相对顺序始终不变,因为他们不会跨过对方。
于是,当有一只蚂蚁从0走到L-1时,坐标最小的蚂蚁的编号就会+1;反之,当有一只蚂蚁从L-1走到0时,编号为-1,于是我们就可以得到所有蚂蚁的坐标了。
代码
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=100005;
int n,L,T,a[N],b[N];
int read()
{
int x=0,f=1;char ch=getchar();
while (ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while (ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
int main()
{
n=read();L=read();T=read();
int s=1;
for (int i=1;i<=n;i++)
{
int x=read(),w=read();
if (w==1)
{
a[i]=(x+T)%L;
if (T>=L-x) (s-=(T-L+x)/L+1)%=n;
}
else
{
a[i]=((x-T)%L+L)%L;
if (T>=x+1) (s+=(T-x-1)/L+1)%=n;
}
}
s=(s%n+n-1)%n+1;
sort(a+1,a+n+1);
for (int i=1;i<=n;i++) b[(s+i-2)%n+1]=a[i];
for (int i=1;i<=n;i++) printf("%d\n",b[i]);
return 0;
}