AtCoder Grand Contest 010 E - Rearranging 拓扑排序+贪心

题意

有一个数组A。现在先手可以把整个数组任意排列,然后后手可以任意次交换两个相邻且互质的数。先手要使得字典序尽量小,后手要使得字典序尽量大。问最后的序列长什么样。
n<=2000,Ai<=10^8

分析

首先很容易想到两个不互质的数的相对位置不能发生改变。
考虑在两个不互质的数之间连边,于是可以得到若干个连通块。
先手的操作可以看成是对每条边定向,使得任意一个连通块都是一个有向无环图。
接下来后手的操作就是找到一个字典序最大的拓扑序。
不难发现先手的最优策略显然是把每个连通块最小的点作为起点,然后每次找到最小且没走过的点走过去。
后手就是每次找入度为0且的点中最大的,然后把这个点删掉。

代码

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;

const int N=2005;

int n,a[N],last[N],deg[N],cnt;
bool vis[N];
struct edge{int to,next;}e[N*N];

int gcd(int x,int y)
{
    if (!y) return x;
    else return gcd(y,x%y);
}

void addedge(int u,int v)
{
    e[++cnt].to=v;e[cnt].next=last[u];last[u]=cnt;
    deg[v]++;
}

void dfs(int x)
{
    vis[x]=1;
    for (int i=1;i<=n;i++)
        if (!vis[i]&&gcd(a[x],a[i])>1)
        {
            addedge(x,i);
            dfs(i);
        }
}

int main()
{
    scanf("%d",&n);
    for (int i=1;i<=n;i++) scanf("%d",&a[i]);
    sort(a+1,a+n+1);
    for (int i=1;i<=n;i++) if (!vis[i]) dfs(i);
    memset(vis,0,sizeof(vis));
    for (int i=1;i<=n;i++)
    {
        for (int j=n;j>=1;j--)
            if (!vis[j]&&!deg[j])
            {
                vis[j]=1;
                printf("%d ",a[j]);
                for (int k=last[j];k;k=e[k].next) deg[e[k].to]--;
                break;
            }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值