bzoj 4233: [Cerc2013]Captain Obvious and the Rabbit-Man 乱搞

题意

定义F:
F(1) = 1,
F(2) = 2,
F(n) = F(n-1) + F(n-2) (n >= 3)
定义p:
p(i) = a1*F(1)^i + a2*F(2)^i + … + ak*F(k)^i
其中k和a1…ak为常数。
现在已知k,p(1),p(2),…,p(k),求p(k+1)。为了避免高精度,所有运算都模掉M。保证F(1),…,F(n)在模质数M下两两不同,保证有唯一解。
1<=k<=4000, 3<=M<=10^9

分析

显然我们可以通过高斯消元来解出a数组,然后直接模拟一遍就好了。
考虑优化高斯消元的过程,可以发现第一次消元的时候是让每一个行向量都减去上一个行向量*f(1),第二次是乘f(2),如此类推。
那么我们可以让矩阵加上第n+1行,由于这个矩阵是满秩的,所以在消完后最后一行的常数项必然会变为0。
那如果我们一开始就让最后一行的常数项为0,然后消元,最后得到的就是答案的相反数。
这样就可以 O(n2) O ( n 2 ) 得到答案了。
还可以通过分治FFT把复杂度优化到 O(nlog2n) O ( n l o g 2 n )

代码

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>

typedef long long LL;

const int N=4005;

int n,MOD,a[N],f[N];

int main()
{
    scanf("%d%d",&n,&MOD);
    for (int i=1;i<=n;i++) scanf("%d",&a[i]);
    f[1]=1;f[2]=2;
    for (int i=3;i<=n;i++) f[i]=(f[i-1]+f[i-2])%MOD;
    for (int i=1;i<=n;i++)
        for (int j=n+1;j>i;j--)
            (a[j]+=MOD-(LL)a[j-1]*f[i]%MOD)%=MOD;
    printf("%d",(MOD-a[n+1])%MOD);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值