ElasticSearch 实战:字段类型

本文介绍了Elasticsearch中常见的字段类型,包括文本、关键字、数值、日期、地理和特殊类型,以及如何根据业务场景选择和定制字段类型以优化搜索性能和查询准确性。实战部分展示了如何在实际项目中灵活运用这些字段类型。
摘要由CSDN通过智能技术生成

Elasticsearch 提供了一系列丰富的字段类型来支持不同类型的数据存储和查询。理解并正确选择字段类型是设计高效、准确的索引映射的关键。以下是一些常见的字段类型及其应用场景:

一、文本类型

1. text

适用于全文搜索的文本数据。text 类型的字段会被分词(tokenized)并建立倒排索引,支持模糊搜索、短语搜索、同义词搜索等复杂查询。默认使用标准分析器,但可以指定其他分析器以适应特定语言或文本处理需求。

{
  "properties": {
    "description": {
      "type": "text",
      "analyzer": "english"
    }
  }
}
2. keyword

用于存储不可分词的、完整的、原始的值,如标签、ID、电子邮件地址等。keyword 类型字段用于精确匹配、排序、聚合等操作,不进行分词处理。

{
  "properties": {
    "product_id": {
      "type": "keyword"
    }
  }
}

二、数值类型

1. long / integer / short / byte

整数类型,分别对应不同大小的整数值范围。

{
  "properties": {
    "quantity_sold": {
      "type": "integer"
    }
  }
}
2. double / float

浮点数类型,分别对应不同精度的浮点数值。

{
  "properties": {
    "average_rating": {
      "type": "double"
    }
  }
}

三、日期类型

1. date

存储日期和时间数据,支持多种格式和时间区间查询。

{
  "properties": {
    "created_at": {
      "type": "date",
      "format": "yyyy-MM-dd HH:mm:ss"
    }
  }
}

四、地理类型

1. geo_point

存储经纬度坐标,支持地理距离查询、边界框查询、多边形查询等。

{
  "properties": {
    "location": {
      "type": "geo_point"
    }
  }
}

五、特殊类型

1. boolean

存储布尔值(true/false)。

{
  "properties": {
    "is_active": {
      "type": "boolean"
    }
  }
}
2. object

用于嵌套结构,内部可以包含其他字段类型。

{
  "properties": {
    "address": {
      "type": "object",
      "properties": {
        "street": { "type": "text" },
        "city": { "type": "text" },
        "zip_code": { "type": "keyword" }
      }
    }
  }
}
3. nested

用于存储数组形式的独立对象,每个对象都有自己的文档结构,可以独立查询和聚合。

{
  "properties": {
    "tags": {
      "type": "nested",
      "properties": {
        "name": { "type": "text" },
        "color": { "type": "keyword" }
      }
    }
  }
}

六、多字段(Multi-Fields)

为一个字段创建多个映射定义,以便以不同方式索引和查询同一字段的内容。

{
  "properties": {
    "title": {
      "type": "text",
      "fields": {
        "raw": { "type": "keyword" },
        "english": {
          "type": "text",
          "analyzer": "english"
        }
      }
    }
  }
}

在这个例子中,title 字段既有一个默认的 text 类型映射,还有一个 keyword 类型的子字段 title.raw 用于精确匹配,还有一个使用英语分析器的 title.english 子字段。

实战应用

在实际使用中,根据业务数据的性质选择合适的字段类型,并结合多字段、分析器等特性进行定制化设置,可以显著提升Elasticsearch的搜索性能和查询准确性。例如:

  • 对于用户搜索输入,使用 text 类型字段并配置相应的语言分析器。
  • 对于需要排序、过滤或聚合的字段,如产品类别、用户角色等,使用 keyword 类型。
  • 对于包含时间序列数据的字段,如交易时间、登录时间等,使用 date 类型。
  • 对于需要进行地理位置查询的字段,如用户位置、门店坐标等,使用 geo_point 类型。

通过合理设置字段类型,您可以在Elasticsearch中高效地存储、查询和分析各种类型的数据。在设计映射时,务必参考官方文档以获取最新的字段类型特性和最佳实践。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值