在 Kubernetes 中,Resource Quotas(资源配额)是一种限制命名空间内资源使用总量的机制。通过设置资源配额,集群管理员可以控制每个命名空间中 Pod、服务和其他对象的数量及所使用的计算资源总量(如 CPU 和内存)。这有助于确保集群中的资源被公平地分配,并防止某个团队或项目占用过多资源导致其他用户受到影响。
资源配额的工作原理
- 命名空间级别:资源配额是在命名空间级别定义的。每个命名空间可以有多个配额对象,但通常每个命名空间只有一个。
- 硬性限制:一旦设置了资源配额,Kubernetes 会强制执行这些限制。如果创建或更新的对象超过了配额限制,则请求会被拒绝。
- 多种资源类型:资源配额可以应用于多种资源类型,包括:
- 计算资源:CPU 和内存
- 存储资源:持久卷存储
- 对象数量:Pods、Services、ReplicationControllers 等
- 监控和报告:可以通过
kubectl
命令查看当前的资源使用情况与配额限制之间的对比。
配置资源配额
资源配额是通过创建一个 ResourceQuota
对象来定义的。以下是一个示例配置:
apiVersion: v1
kind: ResourceQuota
metadata:
name: compute-resources
namespace: my-namespace
spec:
hard:
requests.cpu: "1"
requests.memory: 1Gi
limits.cpu: "2"
limits.memory: 2Gi
pods: "4"
services: "5"
persistentvolumeclaims: "10"
在这个例子中,my-namespace
命名空间内的所有 Pod 必须满足以下条件:
- 所有 Pod 的 CPU 请求总和不能超过 1 核。
- 所有 Pod 的内存请求总和不能超过 1GB。
- 所有 Pod 的 CPU 限制总和不能超过 2 核。
- 所有 Pod 的内存限制总和不能超过 2GB。
- 命名空间内最多只能有 4 个 Pod。
- 命名空间内最多只能有 5 个 Service。
- 命名空间内最多只能有 10 个 PersistentVolumeClaim。
应用资源配额
-
创建资源配额:
使用kubectl apply
命令将资源配额应用到集群中。kubectl apply -f resource-quota.yaml
-
验证资源配额:
应用资源配额后,可以通过kubectl get resourcequotas
查看已定义的资源配额。kubectl get resourcequotas -n my-namespace
-
检查配额状态:
可以使用kubectl describe
命令来获取更详细的配额信息,包括当前使用量和配额限制。kubectl describe resourcequota compute-resources -n my-namespace
示例场景
假设你有一个开发环境和一个生产环境,你希望开发环境的资源使用受到严格限制,而生产环境则可以使用更多的资源。你可以为这两个环境创建不同的命名空间,并分别为它们设置不同的资源配额。
开发环境
apiVersion: v1
kind: ResourceQuota
metadata:
name: dev-compute-resources
namespace: development
spec:
hard:
requests.cpu: "2"
requests.memory: 2Gi
limits.cpu: "4"
limits.memory: 4Gi
pods: "10"
services: "15"
persistentvolumeclaims: "5"
生产环境
apiVersion: v1
kind: ResourceQuota
metadata:
name: prod-compute-resources
namespace: production
spec:
hard:
requests.cpu: "8"
requests.memory: 8Gi
limits.cpu: "16"
limits.memory: 16Gi
pods: "50"
services: "75"
persistentvolumeclaims: "20"
注意事项
- 优先级:资源配额是硬性限制,一旦达到配额,任何新的资源请求都会被拒绝。
- 扩展性:如果需要增加资源配额,必须手动更新配额对象。
- 多租户:资源配额非常适合多租户环境,可以确保每个租户都有足够的资源,同时防止滥用。
- 默认行为:如果没有定义资源配额,那么命名空间内的资源使用是不受限制的。
通过合理地设置资源配额,集群管理员可以更好地管理和优化集群资源的使用,保证集群的稳定性和可靠性。