Domain Adaptive简介

Domain adaptive

机器学习任务中,一般都假设训练集和测试集分布一致,所以在训练集上训练模型,测试集上测试。但是实际使用中测试集一般和训练集数据分布会出现很大差异,所以模型在实际使用中效果可能会下降很多。(比如用中国人训练的人脸检测模型在检测外国人的时候效果会下降)

协方差偏移(convariance shift):数据的边缘分布发生变化,可以理解为训练集和测试集数据分布差异。

迁移学习:

在这里插入图片描述

迁移学习参考:

什么是迁移学习 (Transfer Learning)?这个领域历史发展前景如何? - 刘诗昆的回答 - 知乎
https://www.zhihu.com/question/41979241/answer/123545914

领域适应

领域适应是迁移学习的研究任务之一,主要解决convariance shift问题,训练集与测试集的数据分布不匹配(不满足独立同分布条件)问题,即特征空间一致,类别空间一致,仅特征分布不一致的问题。

  • 源域和目标域:
    源域:表示与测试样本分布不同的领域,有监督信息。
    目标域:测试样本所在领域,一般无label或者有一小部分label。
    源域和目标域含有某些相同的类别,但是分布不同(比如不同国家,年龄的人或者不同城市,季节的交通场景)。

根据源域和目标域不同类型,领域自适应可以分为四个场景:无监督、有监督、异构分布、多源域适应 。

  • 方法:
    1)样本自适应,对源域样本进行加权重采样,从而逼近目标域的分布。
    2)特征层面自适应,将源域和目标域投影到公共特征子空间。
    3)模型层面自适应,对源域误差函数进行修改,考虑目标域的误差。

样本自适应:
其基本思想是对源域样本进行重采样,从而使得重采样后的源域样本和目标域样本分布基本一致,在重采样的样本集合上重新学习分类器。
特征自适应:
其基本思想是学习公共的特征表示,在公共特征空间,源域和目标域的分布要尽可能相同。对某些特征增加了一个MMD等约束,使得源域和目标域要具有尽可能相同的分布。通过特征自适应,将输入的样本投影到公共子空间,通过计算源域的经验误差,逼近目标域的经验误差。
模型自适应:
其基本思想是直接在模型层面进行自适应。模型自适应的方法有两种思路,一是直接建模模型,但是在模型中加入“domain间距离近”的约束,二是采用迭代的方法,渐进的对目标域的样本进行分类,将信度高的样本加入训练集,并更新模型。
在这里插入图片描述

  • 适用情况:
    样本自适应作用于最前端,适合于源域和目标域分布差异小的情况。
    特征自适应适用于于源域和目标域有一定差异的情况。
    模型自适应的适用范围最广,能够应用于源域和目标域差异比较大的场景。

  • 度量域之间距离的方法:

Euclidean distance
Minkowski distance
Cosine similarity
Mutual Information
Wasserstein Distance
KL divergence
Bregman Divergence
Maximum Mean Discrepancy
Low-Rank
在这里插入图片描述
KL散度度量通常需要对分布进行假设或对概率分布进行估计。
MMD需要把源域和目标域映射到可再生希尔伯特空间,因此需要选择合适的核函数。
低秩假设源域样本可以被目标域重构,会损失源域样本的多样性。

  • 常见数据集:
    • 1)分割:SYHTHIA、GTA5、CITYSCAPE。前两个是生成数据集,第三个是真实交通场景数据,三个数据集之间包含大概20个共同的类;
    • 2)数字:MNIST、USPS、SVHN。几个0-9的数字数据集;
    • 3)办公室物品:office数据集,4110张,31类,3个域(amazon,webcam,dslr)

以下是一篇文章里的不错的总结:

[cvpr2017]Joint Geometrical and Statistical Alignment for Visual Domain Adaptation

  • 最常用方法:

    • 1.instance-based adaptive
      通过源域样本采样后调整权重的方式,更好的匹配目标域分布来减少分布差异。
      需要满足严格要求:
      1)源域和目标域的条件分布必须是相同的;
      2)源域中的某部分数据可以通过重新加权的方式用在目标域。
    • 2.feature representation adaptive
      将源域和目标域都映射到一个分布差异比较小的域中。
      要求比较简单:需要存在一个可以让源域和目标域分布相似的公共空间。
    • 3.classifier-based adaptive
      无监督下不可用,因为无label。
  • 比较常见的基于特征表示的自适应方法。
    有两种特征变换方法:

    • 1)data centric methods:
      找一个统一变换,把源域和目标域的数据投影到域不变的空间中,来减少源域和目标域数据的分布差异,并且保留原始域空间中的数据属性。
      特点:仅利用到了源域和目标域的共同特征,当两个余之间分布差异很大的时候会效果很差,因为可能不存在公共空间。

    • 2)subspace centric methods:
      通过操纵两个子空间来减少域差异,每一个独立的域都对最后的映射有贡献,从而利用域特定的特征。(比如简单的线性映射,或者grassmann流形映射)。
      特点:只对子空间操作,而不用直接考虑两个域投影数据之间的分布差异。

Domain Adaptive在无监督的语义分割上的应用:https://blog.csdn.net/qq_33278461/article/details/90480665

reference:

https://blog.csdn.net/wydbyxr/article/details/82906939
https://blog.csdn.net/gzmfxy/article/details/78905042
https://blog.csdn.net/ltochange/article/details/78773476
https://zhuanlan.zhihu.com/p/21441807
https://blog.csdn.net/MataFela/article/details/77827217
https://www.zhihu.com/question/41979241
https://www.zhihu.com/search?type=content&q=domain adaptive

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值