pytorch下一键切换数据到GPU

本文介绍了在PyTorch中如何使用to方法将数据迁移到GPU,探讨了该方法对于模块和张量的不同影响。当对张量使用to方法时,会创建在不同设备上的两个独立张量,尽管在CPU上它们表现相同,但在GPU上则是不同的对象,且此操作支持反向传播。
摘要由CSDN通过智能技术生成
device = torch.device('cuda:0')
net = MLP().to(device)  # 将网络搬到GPU上
loss = nn.CrossEntropyLoss().to(device)  # 将损失函数搬到GPU上

data, target 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值