device = torch.device('cuda:0')
net = MLP().to(device) # 将网络搬到GPU上
loss = nn.CrossEntropyLoss().to(device) # 将损失函数搬到GPU上
data, target
pytorch下一键切换数据到GPU
最新推荐文章于 2024-08-31 13:33:17 发布
本文介绍了在PyTorch中如何使用to方法将数据迁移到GPU,探讨了该方法对于模块和张量的不同影响。当对张量使用to方法时,会创建在不同设备上的两个独立张量,尽管在CPU上它们表现相同,但在GPU上则是不同的对象,且此操作支持反向传播。
摘要由CSDN通过智能技术生成