GANs学习专题之CGAN(条件生成对抗网络)精讲与代码实现(Python和Pytorch)

本文详细介绍了条件生成对抗网络(CGAN)的概念,它在原始GAN的基础上引入了条件输入,增强了模型的可控性。通过多模态学习,CGAN被应用于图像标签生成任务,并取得了显著效果。文章提供了MNIST数据集上的CGAN PyTorch代码实现,展示了如何训练和生成手写数字图像。
摘要由CSDN通过智能技术生成

GANs学习专题之CGAN(条件生成对抗网络)精讲与代码实现(Python和Pytorch)

Conditional Generative Adversarial Nets有何贡献?

相对于GAN,CGAN在输入数据增加了条件输入,即GAN的价值函数V(g(z),d(x))——》CAGN的V(g(z|y),d(x|y))
这里的z是随机噪声,x是输入的真实数据,y是条件数据。

CGAN的贡献:该论文除了改建了模型,还利用CGAN训练了当时最新的任务-多模态的图像标签生成,通过实验结果可以看到图像标签的条件输入使得CGAN能够控制生成手写数字

在这里插入图片描述

背景

在这里插入图片描述
多模态学习
在这里插入图片描述
图像标记

  1. 用词语对图像的不同内容进行多维度的表达

图像描述

  • 图像到文字的描述
  • 获取图像的标记语言
  • 理解图像与标记之间的关系
  • 生成人类可读的句子

词向量模型-论文用于多模态学习实验

论文中采用skip-gram方法的Word2vec来实现图像标记

在这里插入图片描述

数据集

MNI • ST 手写数字集,源自NIST;28*28的灰度图,训练集60000张,测试集10000张 点击获取
MIRFLICKR-25000 • 源自雅虎Flickr网站的影像数据库,25000张图像,图像拥有多个描述tag 点击获取
YFCC 100M • 源自雅虎Flickr网站的影像数据库,由1亿条产生于2004年至2014年间的多条媒体数据组成, 包含了9920万的照片数据以及80万条视频数据,数据包括相应tag

论文成功

在这里插入图片描述

代码实战

import argparse
import os
import numpy as np
import math

import torchvision.transforms as transforms
from torchvision.utils import save_image

from torch.utils.data import DataLoader
from torchvision import datasets
from torch.autograd import Variable

import torch.nn as nn
import torch.nn.functional as F
import torch

os.makedirs("images", exist_ok=True)

parser = argparse.ArgumentParser()
parser.add_argument("--n_epochs", type=int, default=200, help="number of epochs of training")
parser.add_argument("--batch_size", type=int, default=64, help="size of the batches")
parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate")
parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient")
parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient")
parser.add_argument("--n_cpu", type=int, default=8, help="number of cpu threads to use during batch generation")
parser.add_argument("--latent_dim", type=int, default=100, help="dimensionality of the latent space")
parser.add_argument("--n_classes", type=int, default=10, help="number of classes for dataset")
parser.add_argument("--img_size", type=int, default=32, help="size of each image dimension")
parser.add_argument("--channels", type=int, default=1, help="number of image channels")
parser.add_argument("--sample_interval", type=int, default=400, help="interval between image sampling")
opt = parser.parse_args()
print(opt)

cuda = True if torch.cuda.is_available() else False


def weights_init_normal(m):
    classname = m.__class__.__name__
    if classname.find("Conv") != -1:
        torch.nn.init.normal_(m.weight.data, 0.0, 0.02)
    elif classname.find("BatchNorm2d") != -1:
        torch.nn.init.normal_(m.weight.data, 1.0, 0.02)
        torch.nn.init.constant_(m.bias.data, 0.0)


class Generator(nn.Module):
    def __init__(self):
        super(Generator, self).__init__()

        self.label_emb = nn.Embedding(opt.n_classes, opt.latent_dim)

        self.init_size = opt.img_size // 4  # Initial size before upsampling
        self.l1 = nn.Sequential(nn.Linear(opt.latent_dim, 128 * self.init_size ** 2))

        self.conv_blocks = nn.Sequential(
            nn.BatchNorm2d(128),
            nn.Upsample(scale_factor=2),
            nn.Conv2d(128, 128, 3, stride=1, padding=1),
            nn.BatchNorm2d(128, 0.8),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Upsample(scale_factor=2),
            nn.Conv2d(128, 64, 3, stride=1, padding=1),
            nn.BatchNorm2d(64, 0.8),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Conv2d(64, opt.channels, 3, stride=1, padding=1),
            nn.Tanh(),
        )

    def forward(self, noise, labels):
        gen_input = torch.mul(self.label_emb(labels), noise)
        out = self.l1(gen_input)
        out = out.view(out.shape[0], 128, self.init_size, self.init_size)
        img = self.conv_blocks(out)
        return img


class Discriminator(nn.Module):
    def __init__(self):
        super(Discriminator, self).__init__()

        def discriminator_block(in_filters, out_filters, bn=True):
            """Returns layers of each discriminator block"""
            block = [nn.Conv2d(in_filters, out_filters, 3, 2, 1), nn.LeakyReLU(0.2, inplace=True), nn.Dropout2d(0.25)]
            if bn:
                block.append(nn.BatchNorm2d(out_filters, 0.8))
            return block

        self.conv_blocks = nn.Sequential(
            *discriminator_block(opt.channels, 16, bn=False),
            *discriminator_block(16, 32),
            *discriminator_block(32, 64),
            *discriminator_block(64, 128),
        )

        # The height and width of downsampled image
        ds_size = opt.img_size // 2 ** 4

        # Output layers
        self.adv_layer = nn.Sequential(nn.Linear(128 * ds_size ** 2, 1), nn.Sigmoid())
        self.aux_layer = nn.Sequential(nn.Linear(128 * ds_size ** 2, opt.n_classes), nn.Softmax())

    def forward(self, img):
        out = self.conv_blocks(img)
        out = out.view(out.shape[0], -1)
        validity = self.adv_layer(out)
        label = self.aux_layer(out)

        return validity, label


# Loss functions
adversarial_loss = torch.nn.BCELoss()
auxiliary_loss = torch.nn.CrossEntropyLoss()

# Initialize generator and discriminator
generator = Generator()
discriminator = Discriminator()

if cuda:
    generator.cuda()
    discriminator.cuda()
    adversarial_loss.cuda()
    auxiliary_loss.cuda()

# Initialize weights
generator.apply(weights_init_normal)
discriminator.apply(weights_init_normal)

# Configure data loader
os.makedirs("../../data/mnist", exist_ok=True)
dataloader = torch.utils.data.DataLoader(
    datasets.MNIST(
        "../../data/mnist",
        train=True,
        download=True,
        transform=transforms.Compose(
            [transforms.Resize(opt.img_size), transforms.ToTensor(), transforms.Normalize([0.5], [0.5])]
        ),
    ),
    batch_size=opt.batch_size,
    shuffle=True,
)

# Optimizers
optimizer_G = torch.optim.Adam(generator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))

FloatTensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor
LongTensor = torch.cuda.LongTensor if cuda else torch.LongTensor


def sample_image(n_row, batches_done):
    """Saves a grid of generated digits ranging from 0 to n_classes"""
    # Sample noise
    z = Variable(FloatTensor(np.random.normal(0, 1, (n_row ** 2, opt.latent_dim))))
    # Get labels ranging from 0 to n_classes for n rows
    labels = np.array([num for _ in range(n_row) for num in range(n_row)])
    labels = Variable(LongTensor(labels))
    gen_imgs = generator(z, labels)
    save_image(gen_imgs.data, "images/%d.png" % batches_done, nrow=n_row, normalize=True)


# ----------
#  Training
# ----------

for epoch in range(opt.n_epochs):
    for i, (imgs, labels) in enumerate(dataloader):

        batch_size = imgs.shape[0]

        # Adversarial ground truths
        valid = Variable(FloatTensor(batch_size, 1).fill_(1.0), requires_grad=False)
        fake = Variable(FloatTensor(batch_size, 1).fill_(0.0), requires_grad=False)

        # Configure input
        real_imgs = Variable(imgs.type(FloatTensor))
        labels = Variable(labels.type(LongTensor))

        # -----------------
        #  Train Generator
        # -----------------

        optimizer_G.zero_grad()

        # Sample noise and labels as generator input
        z = Variable(FloatTensor(np.random.normal(0, 1, (batch_size, opt.latent_dim))))
        gen_labels = Variable(LongTensor(np.random.randint(0, opt.n_classes, batch_size)))

        # Generate a batch of images
        gen_imgs = generator(z, gen_labels)

        # Loss measures generator's ability to fool the discriminator
        validity, pred_label = discriminator(gen_imgs)
        g_loss = 0.5 * (adversarial_loss(validity, valid) + auxiliary_loss(pred_label, gen_labels))

        g_loss.backward()
        optimizer_G.step()

        # ---------------------
        #  Train Discriminator
        # ---------------------

        optimizer_D.zero_grad()

        # Loss for real images
        real_pred, real_aux = discriminator(real_imgs)
        d_real_loss = (adversarial_loss(real_pred, valid) + auxiliary_loss(real_aux, labels)) / 2

        # Loss for fake images
        fake_pred, fake_aux = discriminator(gen_imgs.detach())
        d_fake_loss = (adversarial_loss(fake_pred, fake) + auxiliary_loss(fake_aux, gen_labels)) / 2

        # Total discriminator loss
        d_loss = (d_real_loss + d_fake_loss) / 2

        # Calculate discriminator accuracy
        pred = np.concatenate([real_aux.data.cpu().numpy(), fake_aux.data.cpu().numpy()], axis=0)
        gt = np.concatenate([labels.data.cpu().numpy(), gen_labels.data.cpu().numpy()], axis=0)
        d_acc = np.mean(np.argmax(pred, axis=1) == gt)

        d_loss.backward()
        optimizer_D.step()

        print(
            "[Epoch %d/%d] [Batch %d/%d] [D loss: %f, acc: %d%%] [G loss: %f]"
            % (epoch, opt.n_epochs, i, len(dataloader), d_loss.item(), 100 * d_acc, g_loss.item())
        )
        batches_done = epoch * len(dataloader) + i
        if batches_done % opt.sample_interval == 0:
            sample_image(n_row=10, batches_done=batches_done)

注:环境配置问题建议用anaconda直接输入
conda install pytorch torchvision torchaudio cudatoolkit=11.1 -c pytorch -c conda-forge
或者
conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch

如果还是报错建议使用我前面GAN的博客给出的具有环境放进txt文件保存并
在项目根目录下,可使用此命令自动安装依赖库:
sudo pip3 install -r requirements.txt(Windows去掉sudo)
对于pytorch,可使用此命令从国内镜像进行快速安装:
pip3 install torch torchvision -i https://pypi.mirrors.ustc.edu.cn/simple安装

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我的简史

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值