Description
给定序列
a
=
(
a
1
,
a
2
,
⋯
,
a
n
)
a=(a_1,a_2,\cdots,a_n)
a=(a1,a2,⋯,an),另有序列
h
h
h,初始时
h
=
a
h=a
h=a.
有
m
m
m 个操作分两种:
- add ( l , r , k ) \operatorname{add}(l,r,k) add(l,r,k):对每个 i ∈ [ l , r ] i\in[l,r] i∈[l,r] 执行 a i ← a i + k a_i\gets a_i+k ai←ai+k.
- query ( l , r ) \operatorname{query}(l,r) query(l,r):求 ∑ i = l r h i \sum_{i=l}^r h_i ∑i=lrhi.
每次 操作 后,对每个 i ∈ [ 1 , n ] i\in[1,n] i∈[1,n] 执行 h i ← h i + a i h_i\gets h_i+a_i hi←hi+ai.
Limitations
1
≤
n
,
m
≤
1
0
5
1\le n,m\le 10^5
1≤n,m≤105
1
≤
l
≤
r
≤
n
1\le l \le r \le n
1≤l≤r≤n
∣
a
i
∣
,
∣
k
∣
≤
1000
|a_i|,|k|\le 1000
∣ai∣,∣k∣≤1000
1
s
,
512
MB
1\text{s},512\text{MB}
1s,512MB
Solution
显然使用线段树,每个节点维护信息
D
=
(
sum
,
hsum
,
len
)
D=(\textit{sum},\textit{hsum},\textit{len})
D=(sum,hsum,len).
当然还需要标记
T
=
(
tag
,
htag
,
upd
)
T=(\textit{tag},\textit{htag},\textit{upd})
T=(tag,htag,upd):
- tag \textit{tag} tag: a i a_i ai 的加标记.
- htag \textit{htag} htag: h i h_i hi 的加标记.
- upd \textit{upd} upd: h i h_i hi 的更新次数.
D + D D+D D+D 显然, D + T D+T D+T 和 T + T T+T T+T 可以用矩阵推,当然也可以直接靠理解:
- hsum ← hsum + sum × upd ′ + htag ′ × len \textit{hsum}\gets\textit{hsum}+\textit{sum}\times \textit{upd\;}^\prime+\textit{htag\;}^\prime\times \textit{len} hsum←hsum+sum×upd′+htag′×len(总共加了 upd \textit{upd} upd 次原序列,再加上自己的标记)
- sum ← sum + tag ′ × len \textit{sum}\gets\textit{sum}+\textit{tag\;}^{\prime}\times\textit{len} sum←sum+tag′×len(加上自己标记)
- htag ← htag + tag × upd ′ + htag ′ \textit{htag}\gets\textit{htag}+\textit{tag}\times \textit{upd\;}^{\prime}+\textit{htag\;}^{\prime} htag←htag+tag×upd′+htag′(和 hsum \textit{hsum} hsum 同理)
- tag ← tag + tag ′ \textit{tag}\gets\textit{tag}+\textit{tag\;}^{\prime} tag←tag+tag′
- upd ← upd + upd ′ \textit{upd}\gets\textit{upd}+\textit{upd\;}^{\prime} upd←upd+upd′
然后套模板即可,时间复杂度 O ( m log n ) O(m\log n) O(mlogn).
Code
2.8 KB , 0.47 s , 10.5 MB (in total, C++20 with O2) 2.8\text{KB},0.47\text{s},10.5\text{MB}\;\texttt{(in total, C++20 with O2)} 2.8KB,0.47s,10.5MB(in total, C++20 with O2)
#include <bits/stdc++.h>
using namespace std;
using i64 = long long;
using ui64 = unsigned long long;
using i128 = __int128;
using ui128 = unsigned __int128;
using f4 = float;
using f8 = double;
using f16 = long double;
template<class T>
bool chmax(T &a, const T &b){
if(a < b){ a = b; return true; }
return false;
}
template<class T>
bool chmin(T &a, const T &b){
if(a > b){ a = b; return true; }
return false;
}
namespace seg_tree {
struct Node {
int l, r, len;
i64 sum, hissum, tag, histag, upd;
};
inline int ls(int u) { return 2 * u + 1; }
inline int rs(int u) { return 2 * u + 2; }
struct SegTree {
vector<Node> tr;
inline SegTree() {}
inline SegTree(const vector<i64>& a) {
const int n = a.size();
tr.resize(n << 1);
build(0, 0, n - 1, a);
}
inline void pushup(int u, int mid) {
tr[u].sum = tr[ls(mid)].sum + tr[rs(mid)].sum;
tr[u].hissum = tr[ls(mid)].hissum + tr[rs(mid)].hissum;
}
inline void apply(int u, i64 tag, i64 histag, i64 upd) {
tr[u].hissum += tr[u].sum * upd + histag * tr[u].len;
tr[u].sum += tag * tr[u].len;
tr[u].histag += tr[u].tag * upd + histag;
tr[u].tag += tag;
tr[u].upd += upd;
}
inline void pushdown(int u, int mid) {
apply(ls(mid), tr[u].tag, tr[u].histag, tr[u].upd);
apply(rs(mid), tr[u].tag, tr[u].histag, tr[u].upd);
tr[u].tag = tr[u].histag = tr[u].upd = 0;
}
inline void build(int u, int l, int r, const vector<i64>& a) {
tr[u].l = l, tr[u].r = r, tr[u].len = r - l + 1;
if (l == r) return (void)(tr[u].sum = tr[u].hissum = a[l]);
const int mid = (l + r) >> 1;
build(ls(mid), l, mid, a);
build(rs(mid), mid + 1, r, a);
pushup(u, mid);
}
inline void add(int u, int l, int r, i64 k) {
if (l <= tr[u].l && tr[u].r <= r) return apply(u, k, 0, 0);
const int mid = (tr[u].l + tr[u].r) >> 1;
pushdown(u, mid);
if (l <= mid) add(ls(mid), l, r, k);
if (r > mid) add(rs(mid), l, r, k);
pushup(u, mid);
}
inline i64 query(int u, int l, int r) {
if (l <= tr[u].l && tr[u].r <= r) return tr[u].hissum;
const int mid = (tr[u].l + tr[u].r) >> 1;
i64 res = 0;
pushdown(u, mid);
if (l <= mid) res += query(ls(mid), l, r);
if (r > mid) res += query(rs(mid), l, r);
return res;
}
inline void range_add(int l, int r, i64 k) { add(0, l, r, k); }
inline i64 range_hsum(int l, int r) { return query(0, l, r); }
};
}
using seg_tree::SegTree;
signed main() {
ios::sync_with_stdio(0);
cin.tie(0), cout.tie(0);
int n, m;
scanf("%d %d", &n, &m);
vector<i64> a(n);
for (int i = 0; i < n; i++) scanf("%lld", &a[i]);
SegTree sgt(a);
for (int i = 0, op, l, r, v; i < m; i++) {
scanf("%d %d %d", &op, &l, &r), l--, r--;
if (op == 1) sgt.range_add(l, r, (scanf("%d", &v), v));
else printf("%lld\n", sgt.range_hsum(l, r));
sgt.apply(0, 0, 0, 1);
}
return 0;
}