LOJ #193 线段树历史和 Solution

Description

给定序列 a = ( a 1 , a 2 , ⋯   , a n ) a=(a_1,a_2,\cdots,a_n) a=(a1,a2,,an),另有序列 h h h,初始时 h = a h=a h=a.
m m m 个操作分两种:

  • add ⁡ ( l , r , k ) \operatorname{add}(l,r,k) add(l,r,k):对每个 i ∈ [ l , r ] i\in[l,r] i[l,r] 执行 a i ← a i + k a_i\gets a_i+k aiai+k.
  • query ⁡ ( l , r ) \operatorname{query}(l,r) query(l,r):求 ∑ i = l r h i \sum_{i=l}^r h_i i=lrhi.

每次 操作 后,对每个 i ∈ [ 1 , n ] i\in[1,n] i[1,n] 执行 h i ← h i + a i h_i\gets h_i+a_i hihi+ai.

Limitations

1 ≤ n , m ≤ 1 0 5 1\le n,m\le 10^5 1n,m105
1 ≤ l ≤ r ≤ n 1\le l \le r \le n 1lrn
∣ a i ∣ , ∣ k ∣ ≤ 1000 |a_i|,|k|\le 1000 ai,k1000
1 s , 512 MB 1\text{s},512\text{MB} 1s,512MB

Solution

显然使用线段树,每个节点维护信息 D = ( sum , hsum , len ) D=(\textit{sum},\textit{hsum},\textit{len}) D=(sum,hsum,len).
当然还需要标记 T = ( tag , htag , upd ) T=(\textit{tag},\textit{htag},\textit{upd}) T=(tag,htag,upd)

  • tag \textit{tag} tag a i a_i ai 的加标记.
  • htag \textit{htag} htag h i h_i hi 的加标记.
  • upd \textit{upd} upd h i h_i hi 的更新次数.

D + D D+D D+D 显然, D + T D+T D+T T + T T+T T+T 可以用矩阵推,当然也可以直接靠理解:

  • hsum ← hsum + sum × upd    ′ + htag    ′ × len \textit{hsum}\gets\textit{hsum}+\textit{sum}\times \textit{upd\;}^\prime+\textit{htag\;}^\prime\times \textit{len} hsumhsum+sum×upd+htag×len(总共加了 upd \textit{upd} upd 次原序列,再加上自己的标记)
  • sum ← sum + tag    ′ × len \textit{sum}\gets\textit{sum}+\textit{tag\;}^{\prime}\times\textit{len} sumsum+tag×len(加上自己标记)
  • htag ← htag + tag × upd    ′ + htag    ′ \textit{htag}\gets\textit{htag}+\textit{tag}\times \textit{upd\;}^{\prime}+\textit{htag\;}^{\prime} htaghtag+tag×upd+htag(和 hsum \textit{hsum} hsum 同理)
  • tag ← tag + tag    ′ \textit{tag}\gets\textit{tag}+\textit{tag\;}^{\prime} tagtag+tag
  • upd ← upd + upd    ′ \textit{upd}\gets\textit{upd}+\textit{upd\;}^{\prime} updupd+upd

然后套模板即可,时间复杂度 O ( m log ⁡ n ) O(m\log n) O(mlogn).

Code

2.8 KB , 0.47 s , 10.5 MB    (in   total,   C++20   with   O2) 2.8\text{KB},0.47\text{s},10.5\text{MB}\;\texttt{(in total, C++20 with O2)} 2.8KB,0.47s,10.5MB(in total, C++20 with O2)

#include <bits/stdc++.h>
using namespace std;

using i64 = long long;
using ui64 = unsigned long long;
using i128 = __int128;
using ui128 = unsigned __int128;
using f4 = float;
using f8 = double;
using f16 = long double;

template<class T>
bool chmax(T &a, const T &b){
	if(a < b){ a = b; return true; }
	return false;
}

template<class T>
bool chmin(T &a, const T &b){
	if(a > b){ a = b; return true; }
	return false;
}

namespace seg_tree {
	struct Node {
		int l, r, len;
		i64 sum, hissum, tag, histag, upd;
	};
	inline int ls(int u) { return 2 * u + 1; }
	inline int rs(int u) { return 2 * u + 2; }
	
	struct SegTree {
		vector<Node> tr;
		inline SegTree() {}
		inline SegTree(const vector<i64>& a) {
			const int n = a.size();
			tr.resize(n << 1);
			build(0, 0, n - 1, a);
		}
		
		inline void pushup(int u, int mid) {
			tr[u].sum = tr[ls(mid)].sum + tr[rs(mid)].sum;
			tr[u].hissum = tr[ls(mid)].hissum + tr[rs(mid)].hissum;
		}
		
		inline void apply(int u, i64 tag, i64 histag, i64 upd) {
			tr[u].hissum += tr[u].sum * upd + histag * tr[u].len;
		    tr[u].sum += tag * tr[u].len;
		    tr[u].histag += tr[u].tag * upd + histag;
		    tr[u].tag += tag;
		    tr[u].upd += upd;
		}
		
		inline void pushdown(int u, int mid) {
			apply(ls(mid), tr[u].tag, tr[u].histag, tr[u].upd);
			apply(rs(mid), tr[u].tag, tr[u].histag, tr[u].upd);
			tr[u].tag = tr[u].histag = tr[u].upd = 0;
		}
		
		inline void build(int u, int l, int r, const vector<i64>& a) {
			tr[u].l = l, tr[u].r = r, tr[u].len = r - l + 1;
			if (l == r) return (void)(tr[u].sum = tr[u].hissum = a[l]);
			const int mid = (l + r) >> 1;
			build(ls(mid), l, mid, a);
			build(rs(mid), mid + 1, r, a);
			pushup(u, mid);
		}
		
		inline void add(int u, int l, int r, i64 k) {
			if (l <= tr[u].l && tr[u].r <= r) return apply(u, k, 0, 0);
			const int mid = (tr[u].l + tr[u].r) >> 1;
			pushdown(u, mid);
			if (l <= mid) add(ls(mid), l, r, k);
			if (r > mid) add(rs(mid), l, r, k);
			pushup(u, mid);
		}
		
		inline i64 query(int u, int l, int r) {
			if (l <= tr[u].l && tr[u].r <= r) return tr[u].hissum;
			const int mid = (tr[u].l + tr[u].r) >> 1;
			i64 res = 0;
			pushdown(u, mid);
			if (l <= mid) res += query(ls(mid), l, r);
			if (r > mid) res += query(rs(mid), l, r);
			return res;
		}
		
		inline void range_add(int l, int r, i64 k) { add(0, l, r, k); }
		inline i64 range_hsum(int l, int r) { return query(0, l, r); }
	};
}
using seg_tree::SegTree;

signed main() {
	ios::sync_with_stdio(0);
	cin.tie(0), cout.tie(0);
	
	int n, m;
	scanf("%d %d", &n, &m);
	
	vector<i64> a(n);
	for (int i = 0; i < n; i++) scanf("%lld", &a[i]);
	
	SegTree sgt(a);
	for (int i = 0, op, l, r, v; i < m; i++) {
		scanf("%d %d %d", &op, &l, &r), l--, r--;
		if (op == 1) sgt.range_add(l, r, (scanf("%d", &v), v));
		else printf("%lld\n", sgt.range_hsum(l, r));
		sgt.apply(0, 0, 0, 1);
	}
	
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值