时间范围:2019-2022年;
空间分辨率:20米;
数据格式: TIFF格式。
年度全球光伏数据集文件夹按年份命名,每个文件命名为 “子区域 ID_年份”。验证数据文件名为 “validate_polygons.shp”。原始 GE 图像采用连续编号的命名方式。
数据声明:
1.数据来源网络收集,版权原作者所有;
2.未经原版权作者许可,任何人不得擅自做他用;
3.本文只负责数据的搜集和整理工作,不能保证资料的精度和准确度以及时效性;
4.任何个人、公司或者其他主体如认为本账号存在侵犯其自身合法权益的内容和行为请立即和我方取得联系,并提供相关资料,以方便我方可以及时做出答复和处理。
引用格式:
Li, A., Liu, L., Li, S. et al. Global photovoltaic solar panel dataset from 2019 to 2022. Sci Data 12, 637 (2025). https://doi.org/10.1038/s41597-025-04985-y
一、数据概况
太阳能光伏(PV)发电以其可负担性和环境效益而闻名,是全球能源供应的关键组成部分。然而,缺乏全面、及时、精确的全球光伏数据集,对光伏潜力的空间分析有限。我们开发了一种在全球范围内识别光伏板的新方法,为2019-2022年制作了每年20米分辨率的数据集。该数据集为未来的研究和决策提供了前所未有的细节和准确性。使用U-Net和随机森林(PUL-RF)的正非标签学习构建了两级光伏分类框架。U-Net首先从亚米谷歌地球图像中识别光伏,在第二阶段扩展正PV样本,其中PUL-RF大规模对Sentinel-2图像进行分类。该数据集使用IoU和F1-Score指标进行评估,准确率超过90%。与现有数据集相比,它提供了更好的精度和空间细节,显示2019年至2022年期间全球光伏增长超过60%,其中发展中国家引领了这一增长。
二、研究方法
图1:两阶段分类框架流程图
在第一阶段,训练一个深度学习 U-Net 模型,以从选定的高分辨率(0.6 米)谷歌地球(GE)图像中提取光伏板。第一阶段的分类旨在扩充正样本光伏板池,这些正样本用于第二阶段分类的训练样本。
在第二阶段分类中,我们使用由扩充的光伏样本集训练的 PUL-RF 来对哨兵 - 2 图像进行分类,从而实现全球范围的高效分类。此外,在实现两阶段分类框架的过程中,引入了一种两级分区策略,这有助于缓解不同地理条件下光伏和非光伏特征的类内变异性。利用所提出的两阶段分类框架,生成了 2019 至 2022 年的全球光伏年地图,并随后与一组独立的验证数据进行对比评估。
三、结果与验证
在基于 U-Net 的第一阶段光伏样本生成中,利用 IoU 和 AP 评估光伏太阳能板与背景特征的分割精度,用 mIoU 和 mAP 评估整体分割精度。评估结果显示光伏太阳能板的分割精度超过 98%。经过 100 次训练周期后,U-Net 的训练精度和验证精度可达约 98%。
图2:精度评估结果:(a) U-Net的训练精度和验证精度;(b) PUL-RF的总体精度(OA)、生产者精度(PA)、用户精度(UA)以及F1分数;(c) 2019年至2022年期间的交并比(IoU)与克鲁伊特瓦根(Kruitwagen)的交并比结果的对比;(d) 2019年至2022年新增加的光伏(PV)项目的预测精度(交并比)。
全文链接:
Global photovoltaic solar panel dataset from 2019 to 2022 | Scientific DataSolar photovoltaic (PV) power generation, known for its affordability and environmental benefits, is a key component of the global energy supply. However, the lack of comprehensive, timely, and precise global PV datasets has limited spatial analysis of PV potential. We developed a new method to identify PV panels globally, producing an annual 20-meter resolution dataset for 2019–2022. This dataset offers unprecedented detail and accuracy for future research and policy-making. A two-stage PV classification framework was built using U-Net and positive unlabelled learning with random forest (PUL-RF). U-Net first recognizes PVs from sub-meter Google Earth images, expanding positive PV samples for the second stage, where PUL-RF classifies Sentinel-2 images on a large scale. The dataset was evaluated with IoU and F1-Score metrics, achieving over 90% accuracy. Compared to existing datasets, it provides better precision and spatial detail, showing global PV growth of over 60% between 2019 and 2022, with developing countries leading the increase.https://www.nature.com/articles/s41597-025-04985-y 数据下载地址:Code for Global Photovoltaic Solar Panel Dataset from 2019 to 2022The first stage uses U-Net, and the second stage utilizes the GEE platform to use RF-PUL.
https://zenodo.org/records/15168340