ML笔记第一周(四):线性代数知识复习

这节课基本没有啥很难的东西,都是线性代数很基础的东西,主要就是hypothesis函数与线代运算的结合那块需要仔细琢磨一下。

1 Matrices and Vectors

1.1 Matrices(矩阵)

矩阵:是由数字组成的,并且在[]中的。它是由行和列组成。
例如下图中,左侧就是一个4×2的矩阵,而右侧是一个2×3的矩阵,而通常表示一个矩阵是几行几列的写法便是R4×2,代表着它是4×2的矩阵。
在这里插入图片描述
再看下图,通过A来标识具体矩阵的某个元素,例如A11=1402,代表的就是A这个矩阵的第一行,第一列的元素是1402,A41=147,代表第四行,第一列的值,假如A43,下图矩阵并没有第三列,所以你可以认为它是错误的,没有定义的。
在这里插入图片描述

1.2 Vector(向量)

向量:是一种特殊的矩阵,只有一列的矩阵。
例如下图,代表的就是一个4维向量,可以用R4来表示:
在这里插入图片描述
如何来表示某一个向量中的元素呢?
如下图,y1=460,y2=232,是用yi来定义某一行的元素值:
在这里插入图片描述
而在向量中有两种定义其索引的形式,如下图:
在这里插入图片描述
而在本课程中,教授以1开始的索引为例子,但在实际设计到机器学习的算法中,应该是以0开始。
tips:平时习惯用大写字母来代表矩阵,小写字母代表向量.

2 Addition and Scalar Mulitplication(标量的加减法,乘法)

2.1 Matrix Addition(矩阵加法)

如下所示:
矩阵的加法,若两个维度相同的矩阵,就是对应的元素相加即可,若维度不相同,则会出现错误,也就是A与B的行数不同,则不可以进行运算。
在这里插入图片描述

2.2 Scalar Multiplication(标量乘法)

若是一个标量与一个矩阵做乘法,则是矩阵的每个元素都乘上标量即可。在乘法的顺序上,可以相互调换,不影响。与此同时,除法也是一样的。如下图:
在这里插入图片描述

3 Matrix-Vector Multiplication(矩阵-向量的乘法运算)

举例:
先用一个矩阵和一个向量相乘,如下图,看了就懂系列,结果很容易算出来:
在这里插入图片描述
用公式写出来就是(A代表矩阵,b代表向量):

A11xb11 + A12xb21 + A13xb31 + A14xb41 
A21xb11 + A22xb21 + A23xb31 + A24xb41 
......  +  ...... +  .....  +  ......

结论:如果A矩阵是3x2,B向量是2x1 ,最终产生的矩阵3x1维度,也可叫向量,因为结果是1列的矩阵。即mxn的矩阵 * nx1的向量 = m行的向量

下面阐述了,如果有个预测房价的hypothesis函数,而左侧有一批房子的大小数据,首先要构建一个矩阵(用一列1和数据组成的,目的是为了构造与向量中的行数相同的列数,这样才能相乘操作)。还需要构建一个二维向量(这里的参数是hypothesis的θ0和θ1),使这两组数据相乘,而在hypothesis函数中的x,对应的就是房子的大小,代入矩阵中可以看到hθ(2104)这样的矩阵结果,对应的就是房价。
在这里插入图片描述
矩阵乘法模拟出来的公式:

   prediction = DataMatrix * Paramties
    prediction:预测的房价(预测值)
    DataMatrix:房子的大小(数据集)
    Paramties:hypothesis的参数(θ0,θ1)

总结:这样的公式好处就是在编程语言中,省去了大量的循环遍历,提升了高效的数据处理以及计算能力。

4 Matrix-Matrix Multiplication(矩阵-矩阵乘法)

矩阵A与矩阵B相乘时:
可以把B矩阵分成多个向量,在分别进行矩阵-向量的乘法运算,最终得到的两个单独的向量在合成一个矩阵即可。如下图:
在这里插入图片描述
与矩阵-向量最后的房价一样的例子,如下图:
在这里插入图片描述
上图右侧有三个不同的hypothesis函数,通过矩阵将它们写成一个2x3的矩阵(每列对应的就是hypothesis中的θ01),房子大小的矩阵依然需要用1去构造(房子大小矩阵的列数与hypothesis参数矩阵行数相同),最终结果是蓝色,红色,粉色,三种分别对应着三个不同的hypothesis的结果,每组对应着房子大小的四个房价值。

5 Matrix Multiplication Properties(矩阵乘法的属性)

在普通的乘法中,我们知道乘法有着交换律的属性,也就是说:
A x B = B x A

但是在矩阵的属性中,这样的交换律并不实用!
A x B ≠ B x A

像下图所示,交换的两个矩阵结果并不相同:
在这里插入图片描述
在普通的乘法中,我们知道乘法有着结合律的属性,也就是说:
(A x B) x C = A x (B x C)

在矩阵的属性中,这样的结合律属性答案是相同的。
(A x B) x C = A x (B x C)
如下图:
在这里插入图片描述
identity matrix(单位矩阵I):对角线都是1,且其他元素都是0的矩阵,如下图:
在这里插入图片描述
单位矩阵的特性:
A·I = I·A = A
也就是说任何矩阵点乘单位矩阵都得自己本身

6 Inverse and Transpose(逆矩阵和转置矩阵)

先来说说”逆”:
在我们的实数中,比如3,它自己本身就有着逆数,3-1就是3的逆数,3·3-1=1,但非所有实数都有这逆运算,比如0,就没有逆运算。

需要注意的是,如果A是squart matrix(方阵,行数列数相等的矩阵,若都是0的方阵,也是没有逆矩阵的!!),才有逆矩阵,得出公式:
A·A-1 = A-1·A = I
在这里插入图片描述
接下来说说Transpose(转置):
如下图:
在这里插入图片描述
如果A是mxn的矩阵,让B=A^T,那B是一个nxm的矩阵:
Bijij = Aji
B12 = A21

7 参考资料

1、Coursera 机器学习 – Matrices and Vectors 笔记(线性代数复习课)【第一周】
2、机器学习 - Introduction | Coursera

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值