今天在网上找到了一份卷积神经元网络训练MNIST数据的代码,放到服务器上运行了一下,结果相对于之前的全连接网络当然是极大提升了。在记录对于代码的理解之前,首先记录一下运行的步骤。
建立一个文件夹,文件夹结构如下:
|__dataset(dir)
|__model(dir)
|__inference.py
|__train.py
|__eval.py
其中dataset文件夹是用来放置训练和测试数据的,model文件夹是用了来放置训练好的模型,inference.py是前向推理,train.py是训练过程,eval.py是验证过程。后面会单独讲解。
下面介绍一下运行的过程,由于训练时间过长,所以应当将进程放到后台上进行训练:
nohup train.py &
提示输出结果将会保存到nohup.out中后,回车。
通过ps命令查看当前正在执行的进程。注意不要用jobs命令,因为关掉了一个会话,jobs就没了。
可以通过先ps命令,查看进程号,通过kill杀掉进程。
ps -u
kill pid