Tensorflow-MNIST卷积神经网络

今天在网上找到了一份卷积神经元网络训练MNIST数据的代码,放到服务器上运行了一下,结果相对于之前的全连接网络当然是极大提升了。在记录对于代码的理解之前,首先记录一下运行的步骤。
建立一个文件夹,文件夹结构如下:

|__dataset(dir)
|__model(dir)
|__inference.py
|__train.py
|__eval.py

其中dataset文件夹是用来放置训练和测试数据的,model文件夹是用了来放置训练好的模型,inference.py是前向推理,train.py是训练过程,eval.py是验证过程。后面会单独讲解。
下面介绍一下运行的过程,由于训练时间过长,所以应当将进程放到后台上进行训练:

nohup train.py &

提示输出结果将会保存到nohup.out中后,回车。
通过ps命令查看当前正在执行的进程。注意不要用jobs命令,因为关掉了一个会话,jobs就没了。
可以通过先ps命令,查看进程号,通过kill杀掉进程。

ps -u
kill pid

这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值