802.11 CCA和NAV机制

本文详细介绍了802.11协议中的CSMA/CA机制,包括等待和退避阶段,重点阐述了物理载波侦听(CCA)中的能量检测和载波侦听,以及网络分配向量(NAV)如何实现虚拟侦听。通过CCA和NAV,无线节点能够准确判断信道状态,确保无线介质的高效利用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

CSMA/CA节点接入

在CSMA/CA机制中,节点在接入信道前需要进行信道监听。这里涉及到两个阶段:等待阶段和退避阶段
等待阶段:节点在竞争信道前需等待一段时间,在这段时间内信道必须一直保持空闲状态;(不同的机制(例如DCF和EDCA机制)会有不同的规则,但是相同的是:在等待时间内需要一直进行**“信道空闲检测”**)
退避阶段:在等待阶段的条件满足后,节点会根据规则在竞争窗口CW中随机选择一个退避值进行退避,即backoff;(退避阶段也需要每隔一个Slot时间进行一次“信道空闲检测”,若空闲,则退避值减1;否则,悬挂退避值)
以上提到的“信道空闲检测”就涉及物理载波侦听(CCA机制)和虚拟载波侦听(NAV机制),CCA机制又包括能量检测ED和载波侦听。

物理载波侦听

在CSMA/CA中,CCA(Clear Channel Assessment)由能量检测和载波检测一起完成:
能量检测(Energy Detection):是直接用物理层接收的能量来判断是否有信号进行接入,若信号强度大于ED_threshold,则认为信道是忙,若小于ED_threshold,则认为信道是闲。同时该ED_threshold的设置与发送功率有关,比如发送功率大于100mW,那么ED_threho

### CCA注意力机制详解 CCA(Canonical Correlation Analysis)注意力机制是一种用于衡量两组变量之间线性关系的方法,在深度学习领域被用来捕获不同模态或同一模态内不同位置之间的关联。不同于强注意力机制,后者专注于图像中的特定点并依赖于强化学习进行训练[^1],而CCA则侧重于跨通道或跨区域的信息交互。 #### 原理概述 CCA的核心思想是从两个不同的视角出发寻找最佳投影方向,使得一对或多对随机向量的最大相关系数达到最大值。当应用于卷积神经网络(CNNs)时,可以理解为计算特征图的不同部分间的相似度矩阵,并基于此构建加权连接。这种方法有助于提高模型对于复杂场景下目标检测识别的能力。 #### 实现方式 为了更好地解释如何在实际应用中实现CCA注意力模块,下面给出一段简化版Python代码示例: ```python import torch from torch import nn class CCALayer(nn.Module): """定义一个简单的CCA层""" def __init__(self, channels, reduction=16): super().__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.fc = nn.Sequential( nn.Linear(channels, channels // reduction), nn.ReLU(inplace=True), nn.Linear(channels // reduction, channels), nn.Sigmoid() ) def forward(self, x): b, c, _, _ = x.size() # 获取batch size channel数 y = self.avg_pool(x).view(b, c) # 对feature map做全局平均池化 y = self.fc(y).view(b, c, 1, 1) return x * y.expand_as(x) # 将权重作用回原输入上 ``` 这段代码展示了如何创建一个基本的CCA层,其中包含了自适应均值池化操作以及全连接层组成的MLP结构来生成最终的空间注意力建议图谱。需要注意的是这里的`reduction`参数控制着降维的比例,从而影响到后续处理的速度与效果平衡。 #### 应用实例 除了上述提到的应用之外,CCA还广泛存在于其他类型的机器学习任务当中,比如多视图数据分析、生物信息学等领域。特别是在视频分类任务中,通过引入non-local block结合CCA技术,能够有效提升算法性能[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值