AOE网上的关键路径
Time Limit: 1000MS
Memory Limit: 65536KB
Problem Description
一个无环的有向图称为无环图(Directed Acyclic Graph),简称DAG图。
AOE(Activity On Edge)网:顾名思义,用边表示活动的网,当然它也是DAG。与AOV不同,活动都表示在了边上,如下图所示:
如上所示,共有11项活动(11条边),9个事件(9个顶点)。整个工程只有一个开始点和一个完成点。即只有一个入度为零的点(源点)和只有一个出度为零的点(汇点)。
关键路径:是从开始点到完成点的最长路径的长度。路径的长度是边上活动耗费的时间。如上图所示,1 到2 到 5到7到9是关键路径(关键路径不止一条,请输出字典序最小的),权值的和为18。
Input
这里有多组数据,保证不超过10组,保证只有一个源点和汇点。输入一个顶点数n(2<=n<=10000),边数m(1<=m <=50000),接下来m行,输入起点sv,终点ev,权值w(1<=sv,ev<=n,sv != ev,1<=w <=20)。数据保证图连通。
Output
关键路径的权值和,并且从源点输出关键路径上的路径(如果有多条,请输出字典序最小的)。
Example Input
9 11 1 2 6 1 3 4 1 4 5 2 5 1 3 5 1 4 6 2 5 7 9 5 8 7 6 8 4 8 9 4 7 9 2
Example Output
18 1 2 2 5 5 7 7 9
但是因为要求一个字典序最小的,所以我们要逆向建图,记录路径。
一张图你就看懂了,1-4-3-6的长度和1-5-2-6的长度是一样的,字典序最小的应该是1-4-3-6.所以我们要逆向建图。
这里求最短路用的前向星+spfa。
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int MAXN=10000+5;
int n,m;
int in[MAXN],out[MAXN];
int cnt;
int head[MAXN];
struct node
{
int v;
int w;
int next;
}edge[MAXN*5];
void init()
{
cnt=0;
for(int i=1;i<=n;++i)
{
in[i]=0;
out[i]=0;
head[i]=-1;
}
}
void add(int u,int v,int w)
{
edge[cnt].v=v;
edge[cnt].w=w;
edge[cnt].next=head[u];
head[u]=cnt++;
}
int s,e;
int path[MAXN];
int dis[MAXN];
bool vis[MAXN];
void spfa()
{
int i;
for(i=1;i<=n;++i)
{
dis[i]=-1;
vis[i]=0;
path[i]=-1;
}
int q[MAXN];
int qhead=0,qtail=0;
q[qtail++]=s;
vis[s]=1;
dis[s]=0;
while(qhead<qtail)
{
int u=q[qhead++];
vis[u]=0;
for(i=head[u];i!=-1;i=edge[i].next)
{
int v=edge[i].v;
int w=edge[i].w;
if(dis[v]<dis[u]+w)
{
dis[v]=dis[u]+w;
path[v]=u;
if(!vis[v])
{
vis[v]=1;
q[qtail++]=v;
}
}
else if(dis[v]==dis[u]+w&&u<path[v])path[v]=u;
}
}
printf("%d\n",dis[e]);
int p=e;
while(path[p]!=-1)
{
printf("%d %d\n",p,path[p]);
p=path[p];
}
}
int main()
{
while(~scanf("%d%d",&n,&m))
{
init();
int u,v,w;
for(int i=0;i<m;++i)
{
scanf("%d%d%d",&u,&v,&w);
add(v,u,w);
in[u]++;
out[v]++;
}
for(int i=1;i<=n;++i)
{
if(!in[i])s=i;
if(!out[i])e=i;
}
spfa();
}
return 0;
}