AOE网上的关键路径

AOE网上的关键路径

Time Limit: 1000MS  Memory Limit: 65536KB
Problem Description

    一个无环的有向图称为无环图(Directed Acyclic Graph),简称DAG图。 
   
 AOE(Activity On Edge)网:顾名思义,用边表示活动的网,当然它也是DAG。与AOV不同,活动都表示在了边上,如下图所示:
                                     

    
如上所示,共有11项活动(11条边),9个事件(9个顶点)。整个工程只有一个开始点和一个完成点。即只有一个入度为零的点(源点)和只有一个出度为零的点(汇点)。
    
关键路径:是从开始点到完成点的最长路径的长度。路径的长度是边上活动耗费的时间。如上图所示,到 579是关键路径(关键路径不止一条,请输出字典序最小的),权值的和为18

Input
    这里有多组数据,保证不超过10组,保证只有一个源点和汇点。输入一个顶点数n(2<=n<=10000),边数m(1<=m <=50000),接下来m行,输入起点sv,终点ev,权值w1<=sv,ev<=n,sv != ev,1<=w <=20)。数据保证图连通。
Output
    关键路径的权值和,并且从源点输出关键路径上的路径(如果有多条,请输出字典序最小的)。
Example Input
9 11
1 2 6
1 3 4
1 4 5
2 5 1
3 5 1
4 6 2
5 7 9
5 8 7
6 8 4
8 9 4
7 9 2
Example Output
18
1 2
2 5
5 7
7 9
不难看出是求一个从起点到汇点的最长路。

但是因为要求一个字典序最小的,所以我们要逆向建图,记录路径。


一张图你就看懂了,1-4-3-6的长度和1-5-2-6的长度是一样的,字典序最小的应该是1-4-3-6.所以我们要逆向建图。

这里求最短路用的前向星+spfa。

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int MAXN=10000+5;
int n,m;
int in[MAXN],out[MAXN];

int cnt;
int head[MAXN];
struct node
{
    int v;
    int w;
    int next;
}edge[MAXN*5];

void init()
{
    cnt=0;
    for(int i=1;i<=n;++i)
    {
        in[i]=0;
        out[i]=0;
        head[i]=-1;
    }
}
void add(int u,int v,int w)
{
    edge[cnt].v=v;
    edge[cnt].w=w;
    edge[cnt].next=head[u];
    head[u]=cnt++;
}


int s,e;
int path[MAXN];
int dis[MAXN];
bool vis[MAXN];
void spfa()
{
    int i;
    for(i=1;i<=n;++i)
    {
        dis[i]=-1;
        vis[i]=0;
        path[i]=-1;
    }
    int q[MAXN];
    int qhead=0,qtail=0;
    q[qtail++]=s;
    vis[s]=1;
    dis[s]=0;
    while(qhead<qtail)
    {
        int u=q[qhead++];
        vis[u]=0;
        for(i=head[u];i!=-1;i=edge[i].next)
        {
            int v=edge[i].v;
            int w=edge[i].w;
            if(dis[v]<dis[u]+w)
            {
                dis[v]=dis[u]+w;
                path[v]=u;
                if(!vis[v])
                {
                    vis[v]=1;
                    q[qtail++]=v;
                }
            }
            else if(dis[v]==dis[u]+w&&u<path[v])path[v]=u;
        }
    }
    printf("%d\n",dis[e]);
    int p=e;
    while(path[p]!=-1)
    {
        printf("%d %d\n",p,path[p]);
        p=path[p];
    }
}
int main()
{
    while(~scanf("%d%d",&n,&m))
    {
        init();
        int u,v,w;
        for(int i=0;i<m;++i)
        {
            scanf("%d%d%d",&u,&v,&w);
            add(v,u,w);
            in[u]++;
            out[v]++;
        }
        for(int i=1;i<=n;++i)
        {
            if(!in[i])s=i;
            if(!out[i])e=i;
        }
        spfa();
    }
    return 0;
}




  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值