HDU-1024 Max Sum Plus Plus (最大M子段和问题)

Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem. 

Given a consecutive number sequence S  1, S  2, S  3, S  4 ... S  x, ... S  n (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ S  x ≤ 32767). We define a function sum(i, j) = S  i + ... + S  j (1 ≤ i ≤ j ≤ n). 

Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i  1, j  1) + sum(i  2, j  2) + sum(i  3, j  3) + ... + sum(i  m, j  m) maximal (i  x ≤ i y ≤ j  x or i  x ≤ j  y ≤ j  x is not allowed). 

But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(i  x, j  x)(1 ≤ x ≤ m) instead. ^_^ 
Input
Each test case will begin with two integers m and n, followed by n integers S  1, S 2, S  3 ... S  n
Process to the end of file. 
Output
Output the maximal summation described above in one line. 
Sample Input
1 3 1 2 3
2 6 -1 4 -2 3 -2 3
Sample Output
6
8


        
  
Hint
Huge input, scanf and dynamic programming is recommended.


【问题描述】----最大M子段和问题
给定由 n个整数(可能为负整数)组成的序列a1,a2,a3,……,an,以及一个正整数 m,要求确定序列 a1,a2,a3,……,an的 m个不相交子段,
使这m个子段的总和达到最大,求出最大和。

题解:转自http://www.cnblogs.com/peng-come-on/archive/2012/01/15/2322715.html
动态规划的思想。
1.基本思路:
  首先,定义数组num[n],dp[m][n]. 
  num[n]用来存储n个整数组成的序列.
  dp[i][j]用来表示由前 j项得到的含i个字段的最大值,且最后一个字段以num[j]项结尾。仔细想想,我们可以知道:
  dp[i][j]=max(dp[i][j-1]+num[j],dp(i-1,t)+num[j])   其中i-1<=t<=j-1.
  (因为必须是以 num[j] 结尾的,所以num[j]一定属于最后一个子段,即要么自己独立成一个子段,要么与前边以num[j-1]结尾的子段联合)
  所求的最后结果为 max( dp[m][j] ) 其中1<=j<=n.
  但是,我们会发现,当n非常大时,这个算法的时间复杂度和空间复杂度是非常高的,时间复杂度近似为O(m*n^2),
  空间复杂度近似为O(m*n).因此,我们需要优化算法来降低时间复杂度和空间复杂度.
2.优化算法:
  (1)节省时间
  由基本思路,我们可以知道,dp[i][j]=max(dp[i][j-1]+num[j],dp(i-1,t)+num[j]),其中i-1<=t<=j-1.我们只要找到dp[i][j-1]
  和dp[i-1][t]的最大值加上num[j]即为dp[i][j].所以,定义一个数组pre_max[n],用pre_max[j-1]来表示求解dp[i][j]时dp[i-1][t]
  的最大值,则dp[i][j]=max(pre_max[j-1],dp[i][j-1])+num[j].
  特别注意,pre_max[n]这个位置的存储空间是始终用不到的,因此可以用来存储其他数值,在接下来会用到。
  在求解dp[i][j]的同时,我们可以计算出dp[i][t];i<=t<=j的最大值,这个最大值在计算dp[i+1][j+1]的时候需要作为pre_max[j]的
  形式被使用,我们先把它存在pre_max[n]中。
  你可能会问:为什么不把它直接放在pre_max[j]中呢?因为你接下来需要计算dp[i][j+1]的值,需要用到pre_max[j]中原来的值,
  如果你把它存在这里,就会覆盖掉计算dp[i][j+1]所需要的那个值。所以,先把它放在pre_max[n]中。
  当我们计算完dp[i][j+1]之后,就会发现pre_max[j]中的值已经没有用处了,我们可以把它更新为计算dp[i+1][j+1]所需要的那个值,
  即之前放在pre_max[n]中的那个值,即执行pre_max[j]=pre_max[n].
  这样我们就节省了计算最大值时付出的时间代价。
  (2)节省空间
  通过时间的节省,我们突然间发现程序执行结束后pre_max[n]的值即为最后的结果,pre_max[n]数组才是我们希望求解的,
  dp[m][n]这个庞大的数组已经不是那么重要了,因此,我们现在用整型数tmp来代替dp[m][n],用来临时存储dp[i][j]的值,
  作为求解pre_max[n]的中介。
  这样就节省了dp[i][j]占用的极大的空间.


自问自己做不做得来,我想我我是真的做不来。没怎么接触dp的题,今天算是见识到了。dp难一点的题就要利用状态转移方程的特性来降低空间复杂度,然后利用一些辅助的东西来降低时间复杂度。神奇的滚动来降低空间复杂度,不得不说dp博大精深.....(蒟蒻QAQ)。

#include <bits/stdc++.h>

using namespace std;
const int MAXN = 1e6+7;
int n,m;
int num[MAXN];
int pre[MAXN];


int main()
{
    while(~scanf("%d%d",&m,&n))
    {
        for(int i = 1 ; i <= n ;++i)
        {
            scanf("%d",&num[i]);
            pre[i] = 0;
        }
        for(int i = 1 ; i <= m ; ++i)
        {
            int temp = 0;
            for(int j = 1 ; j <= i ; ++j)temp += num[j];
            pre[n] = temp;
            //前面这些相当于初始化,当j大于m的时候才会有更新答案操作
            for(int j = i + 1 ; j <= n ; ++j)
            {
                temp = max(pre[j-1],temp) + num[j];
                pre[j-1] = pre[n];
                pre[n] = max(pre[n],temp);
            }
            //这里的pre数组就是不断滚动的,temp也是。pre是i的滚动,而temp则是j的滚动。
        }
        printf("%d\n",pre[n]);
    }
    return 0;
}





  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值