Everybody knows what an arithmetic progression is. Let us remind you just in case that an arithmetic progression is such sequence of numbers a1, a2, ..., an of length n, that the following condition fulfills:
For example, sequences [1, 5], [10], [5, 4, 3] are arithmetic progressions and sequences [1, 3, 2], [1, 2, 4] are not.
Alexander has n cards containing integers. Arthur wants to give Alexander exactly one more card with a number so that he could use the resulting n + 1 cards to make an arithmetic progression (Alexander has to use all of his cards).
Arthur has already bought a card but he hasn't written a number on it. Help him, print all integers that you can write on a card so that the described condition fulfilled.
The first line contains integer n (1 ≤ n ≤ 105) — the number of cards. The next line contains the sequence of integers — the numbers on Alexander's cards. The numbers are positive integers, each of them doesn't exceed 108.
If Arthur can write infinitely many distinct integers on the card, print on a single line -1.
Otherwise, print on the first line the number of integers that suit you. In the second line, print the numbers in the increasing order. Note that the numbers in the answer can exceed 108 or even be negative (see test samples).
3 4 1 7
2 -2 10
1 10
-1
4 1 3 5 9
1 7
4 4 3 4 5
0
2 2 4
3 0 3 6
纯思维,考虑好情况就可以。
n==-1的时候肯定是输出-1
n ==2的时候如果有中项加中项输出3个,没有输出2两个。左端点右端点。
当n>=3 的时候,看两两(排好序)之间的差值有几个不同的数。
如果>=3直接输出0.
如果 == 2,那么看一下较大的差值是不是小的差值的两倍,并且大的差值只出现过一次。这样输出一个构成较大的差值的两个数的中项。
否则输出0。
如果只有一个差值,那么看一下是不是0,是0只输出一个,不是0输出两个,左右端点。
#include <bits/stdc++.h>
using namespace std;
const int MAXN = 1e5+7;
int n;
int num[MAXN];
int cha[MAXN];
int main()
{
scanf("%d",&n);
for(int i = 0 ; i < n ; ++i)scanf("%d",&num[i]);
sort(num,num+n);
if(n == 1)puts("-1");
else if(n == 2)
{
if(num[0] == num[1])
{
printf("1\n%d\n",num[0]);
return 0;
}
int mid = (num[0]+num[1])/2;
int d = num[1] - num[0];
if(mid - num[0] == num[1] - mid)
{
puts("3");
printf("%d %d %d\n",num[0] - d,mid,num[1] + d);
}
else
{
puts("2");
printf("%d %d\n",num[0] - d,num[1] + d);
}
}
else
{
set<int>q;
for(int i = 1 ; i < n ; ++i)
{
q.insert(num[i] - num[i-1]);
}
if(q.size() == 1)
{
int d = *(q.begin());
if(d == 0)
{
printf("1\n%d\n",num[0]);
return 0;
}
puts("2");
printf("%d %d\n",num[0] - d,num[n-1] + d);
}
else if(q.size() == 2)
{
int d1 = *(q.begin());
int d2 = *(++q.begin());
int pos,cnt = 0;
if(d1*2 == d2)
{
for(int i = 1 ; i < n ; ++i)
{
if(num[i] - num[i-1] == d2)
{
cnt++;
pos = i;
}
}
if(cnt == 1)
{
puts("1");
printf("%d\n",(num[pos]+num[pos-1])/2);
}
else puts("0");
}
else puts("0");
}
else puts("0");
}
return 0;
}