给定一个N*N 的方形网格,设其左上角为起点◎,坐标为(1,1),X 轴向右为正,Y
轴向下为正,每个方格边长为1,如图所示。一辆汽车从起点◎出发驶向右下角终点▲,其
坐标为(N,N)。在若干个网格交叉点处,设置了油库,可供汽车在行驶途中加油。汽车在
行驶过程中应遵守如下规则:
(1)汽车只能沿网格边行驶,装满油后能行驶K 条网格边。出发时汽车已装满油,在起
点与终点处不设油库。
(2)汽车经过一条网格边时,若其X 坐标或Y 坐标减小,则应付费用B,否则免付费用。
(3)汽车在行驶过程中遇油库则应加满油并付加油费用A。
(4)在需要时可在网格点处增设油库,并付增设油库费用C(不含加油费用A)。
(5)(1)~(4)中的各数N、K、A、B、C均为正整数,且满足约束:2<=N<=100,2<=K<=10。
设计一个算法,求出汽车从起点出发到达终点的一条所付费用最少的行驶路线。
对于给定的交通网格,计算汽车从起点出发到达终点的一条所付费用最少的行驶路线。
思路:不难看出是最短路的题,但是没见过这种最短路的,当时是在网络流24题里面的,所以觉得可能是流,然而这个题确实是最短路。
我们把每个点都看成一个状态就可以,只不过这里每个点会因为剩余油量的问题多出k个状态。每个点的状态相当于是 (i,j,k) 了,分别表示在网格(i,j)这个点,剩余流量是k的一个状态。然后建图:
* 对于(i,j)点是油库。那么我们对于 (i,j,l) 到 (i,j,k) 连一条边,花费为a。l的范围是0到k-1.
* 对于(i,j)点不是油库。那么我们对于