汽车加油行驶问题

汽车从起点到终点的最低费用行驶路线问题被转化为最短路问题。通过将每个网格点视为状态,并考虑油量因素建立多状态节点的图。通过连接油库和非油库的节点,以及考虑行驶费用,利用最短路算法求解费用最小的路径。
摘要由CSDN通过智能技术生成

给定一个N*N 的方形网格,设其左上角为起点◎,坐标为(1,1),X 轴向右为正,Y
轴向下为正,每个方格边长为1,如图所示。一辆汽车从起点◎出发驶向右下角终点▲,其
坐标为(N,N)。在若干个网格交叉点处,设置了油库,可供汽车在行驶途中加油。汽车在
行驶过程中应遵守如下规则:
(1)汽车只能沿网格边行驶,装满油后能行驶K 条网格边。出发时汽车已装满油,在起
点与终点处不设油库。
(2)汽车经过一条网格边时,若其X 坐标或Y 坐标减小,则应付费用B,否则免付费用。
(3)汽车在行驶过程中遇油库则应加满油并付加油费用A。
(4)在需要时可在网格点处增设油库,并付增设油库费用C(不含加油费用A)。
(5)(1)~(4)中的各数N、K、A、B、C均为正整数,且满足约束:2<=N<=100,2<=K<=10。
设计一个算法,求出汽车从起点出发到达终点的一条所付费用最少的行驶路线。

对于给定的交通网格,计算汽车从起点出发到达终点的一条所付费用最少的行驶路线。

思路:不难看出是最短路的题,但是没见过这种最短路的,当时是在网络流24题里面的,所以觉得可能是流,然而这个题确实是最短路。
我们把每个点都看成一个状态就可以,只不过这里每个点会因为剩余油量的问题多出k个状态。每个点的状态相当于是 (i,j,k) 了,分别表示在网格(i,j)这个点,剩余流量是k的一个状态。然后建图:
* 对于(i,j)点是油库。那么我们对于 (i,j,l) (i,j,k) 连一条边,花费为a。l的范围是0到k-1.
* 对于(i,j)点不是油库。那么我们对于

1.问题描述 给定一个N*N 的方形网格设其左上角起点坐标为(1,1),X 轴向右为,Y 轴 向下,每个方格边长为1。一辆汽车起点出发驶向右下角终点,其坐标为(N,N)。 在若干个网格交叉点处,设置了油库,可供汽车行驶途中加油汽车行驶过程中应遵守 如下规则: (1)汽车只能沿网格行驶,装满油后能行驶K 条网格边。出发时汽车已装满油,在 起点与终点处不设油库。 (2)当汽车行驶经过一条网格边时,若其X 坐标或Y 坐标减小,则应付费用B,否则 免付费用。 (3)汽车行驶过程中遇油库则应加满油并付加油费用A。 (4)在需要时可在网格点处增设油库,并付增设油库费用C(不含加油费用A)。 (5)(1)~(4)中的各数N、K、A、B、C均为整数。 算法设计: 求汽车起点出发到达终点的一条所付费用最少的行驶路线。 数据输入: 输入数据。第一行是N,K,A,B,C的值,2 <= N <= 100, 2 <= K <= 10。第二行起是一个N*N 的0-1方阵,每行N 个值,至N+1行结束。方阵的第i 行第j 列处的值为1 表示在网格交叉点(i,j)处设置了一个油库,为0 时表示未设油库。 各行相邻的2 个数以空格分隔。 结果输出: 将找到的最优行驶路线所需的费用,即最小费用输出. Sample input 9 3 2 3 6 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 Sample output 12
问题描述(完全解决) 给定一个N*N 的方形网格设其左上角起点坐标为(1,1),X轴向右为,Y轴向下为,每个方格边长为1。一辆汽车起点出发驶向右下角终点,其坐标为(N,N)。 在若干个网格交叉点处,设置了油库,可供汽车行驶途中加油汽车行驶过程中应遵守如下规则: (1)汽车只能沿网格行驶,装满油后能行驶K条网格边。出发时汽车已装满油,在起点与终点处不设油库。 (2)当汽车行驶经过一条网格边时,若其X坐标或Y坐标减小,则应付费用B,否则免付费用。 (3)汽车行驶过程中遇油库则应加满油并付加油费用A。 (4)在需要时可在网格点处增设油库,并付增设油库费用C(不含加油费用A)。 (5)(1)~(4)中的各数N、K、A、B、C均为整数。 你的任务:求汽车起点出发到达终点的一条所付费用最少的行驶路线。 输入 有若干组数据。每组数据的第一行是N,K,A,B,C的值,2 £ N £ 100,2 £ K £ 10。第二行起是一个N*N 的0-1方阵,每行N个值,至N+1行结束。方阵的第i行第j列处的值为1表示在网格交叉点(i,j)处设置了一个油库,为0时表示未设油库。各行相邻的2 个数以空格分隔。 输出 对每组测试数据,一行输出找到的最优行驶路线所需的费用值。 输入样例 9 3 2 3 6 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 输出样例 12
Problem D:汽车最少费用加油行驶 Description 给定一个 N*N 的方形网格, 设其左上角坐标为 (1, 1), X 轴向右为, Y 轴向下为, 每个方格边长为 1, 右下角坐标为 (N, N). 一辆已装满油的汽车从 (1, 1) 为起点出发驶向终点 (N, N). 在若干个网格交叉点处设有油库供汽车行驶途中加油, 在起点与终点处不设油库. 汽车行驶过程中遵守如下规则: 1. 只能沿网格行驶, 装满油后能行驶 K 条网格边 2. 当行驶经过一条网格边时, 若其 X 坐标或 Y 坐标减小, 则应付费用 B, 否则免付费用 3. 在行驶过程中遇油库则应加满油并付加油费用 A 4. 在需要时可在网格点处增设油库, 并付增设油库费用 C (不含加油费用A) 上述各数中的 N, K, A, B, C 均为整数. 求汽车起点出发到达终点的一条所付费用最少的行驶路线所需要的费用. Input 输入数据的第一行是 N, K, A, B, C 的值, 2 ≤ N ≤ 100, 2 ≤ K ≤ 10. 第二行起是一个 N*N 的 0-1 方阵, 每行 N 个值, 至 N+1 行结束. 方阵的第 i 行第 j 列处的值为 1 表示在网格交叉点 (i, j) 处设置有一个油库, 为 0 时表示未设有油库. 各行相邻的两个数以空格分隔. Output 对于测试用例的输入数据, 在一行上输出最优行驶路线所需的费用, 即最小费用. Sample Input 9 3 2 3 6 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 Sample Output 12
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值