机器学习模型性能度量

1. 错误率和精度(拟合度,最基本的方法)

2. 混淆矩阵

这里写图片描述
查全率:P=TP/(TP+FP)(“宁可错杀一千,也不放过一个”)
查准率:R=TP/(TP+FN)

查全率和查准率是一对矛盾的度量,一般来说,查准率高时,查全率会低。以查准率(P)为纵轴,查全率(R)为横轴,可绘制出“P-R图”。
这里写图片描述

比较曲线下面积,它在一定程度上反映了查全率和查准率取得“双高”的比例。但不容易估算,因此人们设计了一些综合考虑查全率和查准率的性能度量:
(1) 平衡点(BEP,Break-Even Point),它是“查准率=查全率”时的取值。如图中A,B,C点。
(2) 由于BEP过于简化,所以更常用的还是F1度量
这里写图片描述
F1是基于查全率和查准率的调和平均定义的:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值