《计算机视觉》读书笔记(二)第3章

第3章 常用概率分布

当拟合数据的概率模型时,需要知道拟合的不确定性。该不确定性用拟合模型参数的概率分布来表示。因此对用于建模的每种分布,另有一个与参数联系的概率分布,后者用来建模前者分布的参数,后者的参数为超参数

超参数决定原分布的参数的概率分布的形状。

3.1 伯努利分布

伯努利分布有一个单参数 λ ∈ [ 0 , 1 ] \lambda \in[0,1] λ[0,1],它定义成功一次( x = 1 x=1 x=1)的概率。
可以表示为:
P r ( x = 0 ) = 1 − λ P r ( x = 1 ) = λ \begin{aligned} Pr(x=0) & =1-\lambda \\ Pr(x=1) & =\lambda \end{aligned} Pr(x=0)Pr(x=1)=1λ=λ
或者表示为:
P r ( x ) = λ x ( 1 − λ ) 1 − x Pr(x)=\lambda^x(1-\lambda)^{1-x} Pr(x)=λx(1λ)1x
或者等价的表示方法:
P r ( x ) = B e r n x [ λ ] Pr(x)=Bern_x[\lambda] Pr(x)=Bernx[λ]

3.2 贝塔分布

贝塔分布是由单变量 λ \lambda λ 定义的连续分布,这里 λ = [ 0 , 1 ] \lambda=[0,1] λ=[0,1]。因此,它适合表示伯努利分布中参数 λ \lambda λ 的不确定性。
贝塔分布有两个参数(即上文所说的超参数) ( α , β ) ∈ [ 0 , ∞ ] (\alpha,\beta)\in[0,\infty] (α,β)[0,],两个参数均取正值并且都影响曲线的形状。
参数决定预期值,如下:
E [ λ ] = α α + β E[\lambda]=\frac{\alpha}{\alpha+\beta} E[λ]=α+βα

3.3 分类分布

分类分布是离散分布,观察 k k k 个可能结果的概率。当仅有两种结果时,伯努利分布是一种特殊的分类分布。
观察 K K K 种可能结果的概率存储在 K ∗ 1 K*1 K1 的参数向量 λ = [ λ 1 , λ 2 , ⋯   , λ k ] \bm\lambda=[\lambda_1,\lambda_2,\cdots,\lambda_k] λ=[λ1,λ2,,λk],其中 λ k ∈ [ 0 , 1 ] \lambda_k\in[0,1] λk[0,1] ∑ k = 1 K = 1 \sum_{k=1}^K=1 k=1K=1
分类分布可写成如下形式:
P r ( x = k ) = λ k Pr(x=k)=\lambda_k Pr(x=k)=λk
记号法为:
P r ( x ) = C a t x [ λ ] Pr(x)=Cat_x[\bm\lambda] Pr(x)=Catx[λ]

3.4 狄利克雷分布

狄利克雷分布定义在 K K K 个连续值 λ 1 , ⋯   , λ k \lambda_1,\cdots,\lambda_k λ1,,λk 上,其中 λ k ∈ [ 0 , 1 ] \lambda_k\in[0,1] λk[0,1] ∑ k = 1 K = 1 \sum_{k=1}^K=1 k=1K=1。因此狄利克雷分布用来定义分类分布中参数的分布。
K K K 维空间中,狄利克雷分布有 K K K 个参数 α 1 , ⋯   , α K \alpha_1,\cdots,\alpha_K α1,,αK,每个参数都取正值。可以写成:
P r ( λ 1 ⋯ K ) = D i r λ 1 ⋯ K [ α 1 ⋯ K ] Pr(\lambda_{1\cdots K})=Dir_{\lambda_1\cdots K}[\alpha_{1\cdots K}] Pr(λ1K)=Dirλ1K[α1K]
贝塔分布是一个二维的特殊狄利克雷分布。

3.5 一元正态分布

一元正态分布(高斯分布)由一个连续值 x ∈ [ − ∞ , ∞ ] x\in[-\infty,\infty] x[,] 定义。
一元正态分布有两个参数,均值 μ \mu μ 和方差 σ 2 \sigma^2 σ2 μ \mu μ 可以取任意实数,它决定峰值的位置。 σ 2 \sigma^2 σ2 大于零,它决定分布的宽度。正态分布定义为:
P r ( x ) = 1 2 π σ 2 exp [ − 0.5 ( x − μ ) 2 σ 2 ] Pr(x)=\frac{1}{\sqrt{2\pi\sigma^2}}\text{exp}\left[-0.5\frac{(x-\mu)^2}{\sigma^2}\right] Pr(x)=2πσ2 1exp[0.5σ2(xμ)2]
将其简写为
P r ( x ) = N o r m x [ μ , σ 2 ] Pr(x)=Norm_x[\mu,\sigma^2] Pr(x)=Normx[μ,σ2]

3.6 正态逆伽马分布

正态逆伽马分布由 μ \mu μ σ 2 \sigma^2 σ2 两个参数定义,其中,前者可取任意值,后者仅取大于零的值。因此该分布可以用来定义正态分布中参数方差和均值的分布。
正态逆伽马分布有4个参数 α , β , γ , δ \alpha,\beta,\gamma,\delta α,β,γ,δ,其中,前三个参数为正实数,最后一个参数可取任意值,可以简写为:
P r ( μ , σ 2 ) = N o r m I n v G a m μ , σ 2 [ α , β , γ , δ ] Pr(\mu,\sigma^2)=NormInvGam_{\mu,\sigma^2}[\alpha,\beta,\gamma,\delta] Pr(μ,σ2)=NormInvGamμ,σ2[α,β,γ,δ]

3.7 多元正态分布

多元正态分布(多元高斯分布)是一个由 D D D 维变量 x \bm x x 的每个元素 x 1 , ⋯   , x D x_1,\cdots,x_D x1,,xD 都是连续的且为任意实数。
多元正态分布有两个参数,均值 μ \bm\mu μ,协方差 Σ \bm\Sigma Σ μ \bm\mu μ D × 1 D\times1 D×1 维向量,它描述分布的均值。协方差 Σ \bm\Sigma Σ 是对称的 D × D D\times D D×D 维正定矩阵,这样使任意的实向量 z \bm z z 满足 z T Σ z \bm z^T\bm{\Sigma z} zTΣz 恒为正。可以简写为:
P r ( x ) = N o r m x [ μ , Σ ] Pr(\bm x)=Norm_{\bm x}[\bm\mu,\bm\Sigma] Pr(x)=Normx[μ,Σ]

3.8 正态逆维希特分布

正态逆维希特分布由一个 D × 1 D\times 1 D×1 维向量 μ \bm\mu μ D × D D\times D D×D 维正定矩阵 Σ \bm\Sigma Σ 定义。它用来描述多元正态分布中参数的概率分布。
正态逆维希特分布有四个参数 α , Ψ , γ , δ \alpha,\bm\Psi,\gamma,\bm\delta α,Ψ,γ,δ,可以简写为:
P r ( μ , Σ ) = N o r I W i s μ , Σ [ α , Ψ , γ , δ ] Pr(\bm\mu,\bm\Sigma)=NorIWis_{\bm{\mu,\Sigma}}[\alpha,\bm\Psi,\gamma,\bm\delta] Pr(μ,Σ)=NorIWisμ,Σ[α,Ψ,γ,δ]

3.9 共轭性

贝塔分布可以表征伯努利分布中参数的概率,其他类似。
前一个分布是后一个的共轭:贝塔分布与伯努利分布共轭。当把一个分布与其共轭分布相乘时,结果正比于一个新的分布,它与共轭形式相同,例如:
B e r n x [ λ ] ⋅ B e t a λ [ α , β ] = k ( x , α , β ) ⋅ B e t a λ [ α ~ , β ~ ] Bern_x[\lambda]\cdot Beta_\lambda[\alpha,\beta]=k(x,\alpha,\beta)\cdot Beta_\lambda[\widetilde{\alpha},\widetilde{\beta}] Bernx[λ]Betaλ[α,β]=k(x,α,β)Betaλ[α ,β ]

总结

使用概率分布可以描述全局状态和图像数据。为此已经给出了四个分布(伯努利分布、分类分布、一元正态分布、多元正态分布)。还给出了四个分布(贝塔分布、狄利克雷分布、正态逆伽马分布、正态逆维希特分布),可以用来描述上一组分布的参数的概率的分布,因此它们可以描述拟合模型的不确定性。第二组的每个分布是对应第一组的共轭。

备注

  • Bishops(2006)第2章
  • Gelman(2004)
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值