一文搞定python中的multiply()和dot以及用法

本文详细介绍了Python中numpy数组和矩阵使用multiply()、dot及*运算符的不同计算方式。*运算符根据操作数类型执行对应位置相乘或矩阵乘法,dot运算符始终进行矩阵乘法,而multiply()则始终执行对应位置相乘。通过多个计算示例,清晰地展示了这些运算符在数组和矩阵操作中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

python中的multiply()和dot以及*用法.md

首先创建如下的数组和矩阵,其中a,b为数组,A,B为矩阵

import numpy as np

a = np.arange(1,5).reshape(2,2)

type(a)
Out[3]: numpy.ndarray

b = np.arange(0,4).reshape(2,2)

type(b)
Out[5]: numpy.ndarray

A = np.mat(a)

type(A)
Out[7]: numpy.matrix

B = np.mat(b)

type(B)
Out[9]: numpy.matrix

下面列出数组和矩阵使用multiply()和dot以及*计算的结果,计算场景有点多,这里先给出multiply()、dot以及*之间的区别:

1 * 运算符:当参与计算的类型都为数组时,计算方式为:对应位置相乘,当其中一个类型为矩阵时,则采用矩阵乘法。

2 dot运算符:无论参与计算的是数组还是矩阵,计算方式都为:矩阵乘法,

3 multiply()运算符:无论参与计算的是数组还是矩阵,计算方式都为:对应位置相乘。

数组*数组

a
Out[11]: 
array([[1, 2],
       [3, 4]])

b
Out[12]: 
array([[0, 1],
       [2, 3]])

a * b
Out[13]: 
array([[ 0,  2],
       [ 6, 12]])

矩阵*矩阵

A
Out[14]: 
matrix([[1, 2],
        [3, 4]])

B
Out[15]: 
matrix([[0, 1],
        [2, 3]])

A*B
Out[16]: 
matrix([[ 4,  7],
        [ 8, 15]])

数组dot数组

a
Out[18]: 
array([[1, 2],
       [3, 4]])

b
Out[19]: 
array([[0, 1],
       [2, 3]])

a.dot(b)
Out[20]: 
array([[ 4,  7],
       [ 8, 15]])

矩阵dot矩阵

A
Out[14]: 
matrix([[1, 2],
        [3, 4]])

B
Out[15]: 
matrix([[0, 1],
        [2, 3]])
Out[21]: 
matrix([[ 4,  7],
        [ 8, 15]])

数组multiply数组

a
Out[22]: 
array([[1, 2],
       [3, 4]])

b
Out[23]: 
array([[0, 1],
       [2, 3]])

np.multiply(a,b)
Out[24]: 
array([[ 0,  2],
       [ 6, 12]])

矩阵multiply矩阵

A
Out[25]: 
matrix([[1, 2],
        [3, 4]])

B
Out[26]: 
matrix([[0, 1],
        [2, 3]])

np.multiply(A,B)
Out[27]: 
matrix([[ 0,  2],
        [ 6, 12]])

数组*矩阵

a
Out[29]: 
array([[1, 2],
       [3, 4]])

B
Out[30]: 
matrix([[0, 1],
        [2, 3]])

a * B
Out[31]: 
matrix([[ 4,  7],
        [ 8, 15]])

矩阵*数组

a
Out[29]: 
array([[1, 2],
       [3, 4]])

B
Out[30]: 
matrix([[0, 1],
        [2, 3]])

a * B
Out[31]: 
matrix([[ 4,  7],
        [ 8, 15]])

数组dot矩阵

a
Out[35]: 
array([[1, 2],
       [3, 4]])

B
Out[36]: 
matrix([[0, 1],
        [2, 3]])

a.dot(B)
Out[37]: 
matrix([[ 4,  7],
        [ 8, 15]])

矩阵dot数组

A
Out[38]: 
matrix([[1, 2],
        [3, 4]])

b
Out[39]: 
array([[0, 1],
       [2, 3]])

A.dot(b)
Out[40]: 
matrix([[ 4,  7],
        [ 8, 15]])

数组multiply矩阵

a
Out[41]: 
array([[1, 2],
       [3, 4]])

B
Out[42]: 
matrix([[0, 1],
        [2, 3]])

np.multiply(a,B)
Out[43]: 
matrix([[ 0,  2],
        [ 6, 12]])

矩阵multiply数组

A
Out[44]: 
matrix([[1, 2],
        [3, 4]])

b
Out[45]: 
array([[0, 1],
       [2, 3]])

np.multiply(A,b)
Out[46]: 
matrix([[ 0,  2],
        [ 6, 12]])

总结:

1 * 运算符:当参与计算的类型都为数组时,计算方式为:对应位置相乘,当其中一个类型为矩阵时,则采用矩阵乘法。

2 dot运算符:无论参与计算的是数组还是矩阵,计算方式都为:矩阵乘法,

3 multiply()运算符:无论参与计算的是数组还是矩阵,计算方式都为:对应位置相乘。

数组使用*运算符时,其计算方式为对应的位置相乘,当想使用数组进行矩阵乘法时,可以使用dot实现,而矩阵使用*运算符时,其计算方式矩阵相乘,当想使用矩阵进行对应位置相乘时,可以使用multiply实现。可见 dot运算符负责数组/矩阵的矩阵乘法,multiply负责矩阵/数组的对应位置相乘。

### Python Numpy `np.dot` 函数详解 #### 功能描述 `np.dot` 是 NumPy中的一个重要函数,用于计算两个数组间的点积。对于二维数组而言,这相当于执行矩阵乘法;而对于一维数组,则是它们对应位置元素相乘后的求操作[^1]。 #### 参数解释 该方法接受两个主要参数: - **a**: 输入的第一个数组。 - **b**: 输入的第二个数组。 此外还可以接收其他可选参数如 `out` 来指定输出缓冲区的位置[^2]。 #### 返回值 返回的是输入数组按规则计算得到的结果数组或标量值(当两者均为向量时)。如果第一个参数是一维而另一个不是,则会抛出错误提示不兼容的操作数形状[^4]。 #### 示例代码展示 下面通过具体例子来理解如何使用此功能: ```python import numpy as np # 一维数组之间做内积运算 vector_a = np.array([1, 2, 3]) vector_b = np.array([4, 5, 6]) result_vector_dot = vector_a @ vector_b # 或者使用 np.dot(vector_a, vector_b) print(f"Vector dot product result: {result_vector_dot}") # 输出应为 32 # 矩阵间进行标准矩阵乘法 matrix_c = np.mat([[1, 2], [3, 4]]) matrix_d = np.mat([[4, 5], [6, 7]]) result_matrix_multiply = matrix_c * matrix_d # 对于mat对象可以直接用*号代替dot() alternative_result = np.dot(matrix_c, matrix_d) print("Matrix multiplication results:") print(alternative_result) ``` 上述代码展示了两种不同类型的输入——向量与矩阵下 `np.dot()` 的应用方式及其预期输出效果[^3]。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值