波士顿动力机器人Atlas,为何如此丝滑~

大家好,我是bug菌~

这几天看到波士顿动力机器人又更新了,在如下视频中机器人Atlas使用动作捕捉开发的强化学习策略进行动作演示,大概的意思就是机器人的运动策略是参考了人类动作捕捉和动画,所以才如此丝滑,这次演示在波士顿动力公司与机器人与人工智能研究所(RAI 研究所)的研究合作伙伴关系下完成。

可能很多看过视频的朋友会觉得有点不可思议,一些朋友觉得视频中Atlas动作“过于丝滑”,怀疑存在后期处理。

不过更多的朋友还是觉得波士顿动力长期研发Atlas,有多个技术迭代的记录,而且波士顿动力非常擅长机器人硬件设计与动态控制,而RAI研究所专注于强化学习等AI算法研究,两者的结合能够实现“硬件+算法”的协同创新,实现该效果并不是很困难,更何况还只是在室内。

所以bug菌这里也大致聊聊这个技术,可能你就不会觉得那么不可思议了~

1、首先进行数据采集与预处理

• 动作捕捉:通过光学、惯性或生物力学传感器采集人体或动物的运动数据(如关节位置、速度、加速度)。

 • 数据对齐:将捕捉到的运动数据映射到机器人关节空间(需考虑机器人形态与生物体的差异)。 

• 生成参考轨迹:提取关键运动特征(如步态周期、重心变化),形成参考动作序列。

2、进行强化学习策略设计

• 状态空间(State Space):包括机器人本体传感器数据(关节角度、陀螺仪、力反馈)和任务相关状态(如目标位置)。

 • 动作空间(Action Space):机器人关节的控制指令(如扭矩、速度)。 

• 奖励函数(Reward Function)

1)模仿奖励:鼓励机器人动作与MoCap数据相似(如关节角度误差最小化)。

2)任务奖励:根据任务目标设计(如前进速度、平衡保持)。

3)惩罚项:防止摔倒、能耗过高或动作不自然。

3、然后进行训练与优化

• 模仿学习(Imitation Learning):利用MoCap数据初始化策略(如通过行为克隆),加速强化学习的收敛。 

• 强化学习算法:采用PPO、SAC、DDPG等算法,通过仿真环境(如MuJoCo、PyBullet)训练策略,使机器人在动态环境中优化动作。

• 域随机化(Domain Randomization):在仿真中引入环境扰动(如地面摩擦变化、外部推力),提升策略的鲁棒性。

4、最后迁移到物理机器人

• Sim-to-Real:通过动力学校准、自适应控制等方法,将仿真中训练的策略迁移到真实机器人。

 • 在线调整:结合实时传感器反馈,微调策略以适应实际环境的动态变化。

所以,是不是很简单~

最后

      好了,今天就跟大家分享这么多了,如果你觉得有所收获,一定记得点个~

唯一、永久、免费分享嵌入式技术知识平台~

推荐专辑  点击蓝色字体即可跳转

☞  MCU进阶专辑图片

☞  嵌入式C语言进阶专辑图片

☞  “bug说”专辑图片

☞ 专辑|Linux应用程序编程大全

☞ 专辑|学点网络知识

☞ 专辑|手撕C语言

☞ 专辑|手撕C++语言

☞ 专辑|经验分享

☞ 专辑|电能控制技术

☞ 专辑 | 从单片机到Linux

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

最后一个bug

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值