ComfyUI 如何部署 Docker 镜像到生产环境

大家好,我是白日梦想家 Nexmoe。近期,我将一套基于 Docker 打包的 ComfyUI 弹性 Serverless 应用进行了开源,该应用具备完整的前后端分离架构以及用户友好的界面。

在完成 ComfyUI 工作流的开发后,把它部署到生产环境是一件较为棘手的事情。因此,我开源了一套案例,以供大家学习参考。

Demo:AI 动漫头像魔法师 - 一键生成宫崎骏风格头像

开源地址:nexmoe/serverless-comfyui: 一个基于 Docker 的 ComfyUI 弹性 Serverless 应用,提供完整的前后端分离架构和用户友好的界面。

项目特点

  • 完整的 Docker 化部署方案
  • 现代化的前端界面
  • 模块化的后端架构
  • 简单的配置和使用方式

架构图

项目结构

comfy-docker/
├── frontend/ # Next.js 前端项目
│ ├── src/ # 源代码
│ └── .env # 环境配置
├── backend/ # ComfyUI 后端
│ ├── checkpoints/ # 模型检查点
│ ├── controlnet/ # ControlNet 模型
│ ├── custom_nodes/ # 自定义节点
│ └── loras/ # LoRA 模型
└── bruno/ # API 测试文件

frontend/ 目录结构如下,模型 和 自定义节点 需要自行下载安装

.
├── Dockerfile
├── checkpoints
│ └── dreamshaperXL_sfwV2TurboDPMSDE.safetensors
├── controlnet
│ ├── sai_xl_canny_256lora.safetensors
│ └── sai_xl_depth_256lora.safetensors
├── custom_nodes
│ ├── ComfyUI-Custom-Scripts
│ ├── ComfyUI-WD14-Tagger
│ ├── ComfyUI_Comfyroll_CustomNodes
│ ├── comfyui-art-venture
│ └── comfyui_controlnet_aux
├── docker-compose.yml
├── loras
│ └── StudioGhibli.Redmond-StdGBRRedmAF-StudioGhibli.safetensors
├── provisioning.sh // 自定义脚本
└── sanhua.json // 工作流

环境要求

  • Docker & Docker Compose
  • NVIDIA GPU(当前演示工作流需要 12G 显存以上)
  • 足够的磁盘空间(100G~200G)用于存储模型

快速开始

后端本地测试

进入后端 Dockerfile 目录

cd backend

下载模型文件

请参考:容器化部署 ComfyUI | 共绩算力

构建 Docker 镜像

docker build -t gongji/comfyui:0.1 .

运行 Docker 容器

docker run -it --rm --gpus all -p 3000:3000 -p 8188:8188 --name comfyui gongji/comfyui:0.1

容器启动后可以访问:

前端本地测试

进入前端目录

cd frontend

配置环境变量

cp .env.example .env
# 编辑 .env 文件配置必要的环境变量

安装依赖并启动

pnpm install
pnpm dev

ComfyUI Docker 部署到 Serverless 弹性平台

请参考 共绩科技的 ComfyUI 部署文档

API 文档

项目使用 Bruno 进行 API 测试和文档管理,相关文件位于 bruno/ 目录。

ComfyUI API 调用示例

以下是调用 ComfyUI API 的示例代码(参考 frontend/src/app/api/route.ts):


async function generateImage(imageUrl: string) {
    // 1. 准备 prompt 数据
    const promptData = { ...promptob };  // 从 JSON 文件导入基础 prompt
    promptData.prompt["30"].inputs.image = imageUrl;  // 修改输入图片


    // 2. 设置请求选项
    const url = `${process.env.GONGJI_ENDPOINT}/prompt`;
    const options = {
        method: 'POST',
        headers: { 'content-type': 'application/json' },
        body: JSON.stringify(promptData)
    };


    // 3. 发送请求
    const response = await fetch(url, options);
    const data = await response.json();


    // 4. 错误处理
    if (response.status !== 200) {
        throw new Error(response.statusText);
    }


    // 5. 处理返回的图片数据
    if (data.images && data.images.length > 0) {
        return data.images[0];  // 返回 base64 格式的图片数据
    } else {
        throw new Error('没有返回有效的图片数据');
    }
}

主要步骤说明:

  1. 准备 Prompt:    - 从 JSON 文件导入基础 prompt 配置    - 根据需要修改 prompt 中的参数(如输入图片)

  2. 发送请求:    - 使用 POST 方法    - Content-Type 设置为 application/json    - 请求体为序列化后的 prompt 数据

  3. 处理响应:    - 检查响应状态码    - 解析返回的 JSON 数据    - 提取生成的图片(base64 格式)

  4. 错误处理:    - 记录错误日志    - 抛出适当的错误信息

环境变量配置

在使用 API 之前,确保配置以下环境变量:

GONGJI_ENDPOINT=your-comfyui-api-endpoint # ComfyUI API 端点

S3 配置说明

项目的图片上传功能需要配置 S3 存储服务。你可以使用 AWS S3 或其他兼容 S3 协议的对象存储服务(如 MinIO)。

frontend/.env 文件中配置以下环境变量:

S3_ENDPOINT=your-s3-endpoint
S3_ACCESS_KEY=your-access-key
S3_SECRET_KEY=your-secret-key
S3_BUCKET=your-bucket-name
S3_REGION=your-region

注意:

  • 确保创建的 bucket 具有适当的访问权限
  • 如果使用 MinIO,endpoint 应该是完整的 URL(例如:http://localhost:9000)
  • 使用 AWS S3 时,可以省略 endpoint 配置

贡献指南

欢迎提交 Issue 和 Pull Request!

许可证

MIT License

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值