Free Qwen3 - 世界首个免费无限制大模型 API 平台

平台简介

Free Qwen3 是一个革命性的分布式 AI 算力平台,基于来自全国各地的 50 台家用电脑的 3090、4080、4090 显卡分布式算力,为开发者提供完全免费、无限制的 Qwen3-30B-A3B 大语言模型 API 服务。

使用方式

  1. 访问 Free Qwen3 官网:Free Qwen3 - 免费分布式 AI 算力平台
  2. 点击"免费 API"按钮
  3. 获取 API Key 并开始使用

核心优势

1. 完全免费

  • 无需注册
  • 无需充值
  • 无使用限制
  • 立即获取 API Key 开始使用

2. 强大算力支持

  • 基于分布式 3090、4080、4090 显卡
  • 支持 Qwen3-30B-A3B 大语言模型
  • 混合专家模型架构
  • 总参数量 300 亿,激活参数量 30 亿
  • 支持 128K 上下文长度

3. 卓越性能

  • 在数学推理、代码生成和通用任务处理方面表现出色
  • 性能媲美 DeepSeek-R1、o1、o3-mini、Grok-3 和 Gemini-2.5-Pro 等明星模型

技术特点

Qwen3-30B-A3B 模型

  • 采用混合专家模型架构
  • 支持 119 种语言和方言
  • 支持思考模式和非思考模式
  • 可根据任务需求灵活切换

本地部署

算了么一键本地运行 Qwen3

  • 无需网络连接,完全离线运行
  • 零延迟响应,即时交互体验
  • 数据安全,完全本地化处理

共享算力优势

  • 闲置算力利用,让硬件创造价值
  • 贡献社区,帮助更多人使用 AI
  • 获得奖励,享受优先级和其他特权

关于我们

Free Qwen3 由共绩算力提供强大的分布式计算支持,核心团队来自清华大学、北京大学以及 Intel、字节跳动等知名企业。团队在分布式计算领域深耕多年,曾获 2024 年中国国际大学生创新大赛亚军,并获得奇绩创坛、水木创投等机构投资。

未来展望

随着模型技术进步,大模型正朝着"小型化"方向发展,在更小算力下释放更强能力。Free Qwen3 将持续跟进最新的开源模型,为用户提供更多选择,同时探索让用户能够更便捷地部署和共享自己的模型。

<think>好的,我现在需要帮助用户解决如何本地部署Qwen2.5-VL 3B模型并提供API服务的问题。首先,我得仔细阅读用户提供的三个引用内容,看看有没有相关的信息可以直接使用。 引用[1]提到了Qwen2.5-VL-72B模型的应用场景和API调用示例,但用户需要的是3B版本的部署方法。可能需要参考类似的步骤,但需要注意模型大小的差异。引用[2]和[3]都是关于Qwen2.5-7B-Instruct模型的FastAPI部署教程,特别是提到了使用AutoDL平台的环境镜像和snapshot_download函数下载模型。虽然用户询问的是3B模型,但部署流程可能有共通之处,比如使用FastAPI框架、下载模型的方式等。 接下来,我需要整理出本地部署Qwen2.5-VL 3B的步骤。首先,环境准备应该包括Python环境、必要的库如transformers和modelscope,可能还需要CUDA支持。然后,模型下载部分,根据引用[3],可以使用modelscope的snapshot_download函数,需要确认3B模型的名称是否正确,可能需要查看官方文档。接着是API服务搭建,参考引用[2]中的FastAPI部署方法,编写启动脚本和API接口。此外,可能需要处理并发请求和GPU资源管理,比如使用uvicorn运行应用,设置workers数量。 需要注意的是,用户可能对具体步骤不熟悉,比如如何安装依赖、如何调用API,所以需要详细说明每个步骤的命令和代码示例。同时,要提醒用户注意模型路径、端口设置以及依赖版本兼容性问题。最后,生成的相关问题要围绕部署过程中可能遇到的难点和应用场景展开,帮助用户进一步探索。 需要验证一下模型名称是否正确,Qwen2.5-VL是否有3B版本,或者用户可能指的是Qwen1.5版本?如果引用中的模型名称可能有误,可能需要用户确认,但根据问题描述,假设存在Qwen2.5-VL 3B模型。此外,确保代码示例中的模型加载部分正确,比如使用AutoModelForCausalLM或AutoModel类,以及tokenizer的加载方式。还要考虑API的安全性和性能优化,比如超时设置和错误处理,但可能超出当前问题范围,可以简要提及。 总之,步骤大致分为环境准备、模型下载、API服务实现和测试调用。确保各部分衔接正确,引用相关参考来源,并生成相关问题帮助用户深入理解。</think>### Qwen2.5-VL 3B模型本地部署及API服务配置指南 #### 一、环境准备 1. 安装Python 3.8+环境,推荐使用conda管理: ```bash conda create -n qwen_env python=3.10 conda activate qwen_env ``` 2. 安装核心依赖库: ```bash pip install "modelscope>=1.9.0" transformers fastapi uvicorn python-multipart ``` 3. 验证GPU驱动(需NVIDIA显卡): ```bash nvidia-smi # 确认CUDA版本≥11.7 ``` #### 二、模型下载 使用modelscope下载3B模型(注意替换模型名称)[^3]: ```python from modelscope import snapshot_download model_dir = snapshot_download(&#39;qwen/Qwen2.5-VL-3B&#39;, cache_dir=&#39;./models&#39;) ``` #### 三、API服务搭建 1. 创建`api_server.py`: ```python from fastapi import FastAPI from transformers import AutoModelForCausalLM, AutoTokenizer import uvicorn app = FastAPI() model_path = "./models/qwen/Qwen2.5-VL-3B" # 加载模型 tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", trust_remote_code=True ) @app.post("/generate") async def generate_text(prompt: str, max_length: int = 512): inputs = tokenizer(prompt, return_tensors="pt").to(model.device) outputs = model.generate(**inputs, max_length=max_length) return {"response": tokenizer.decode(outputs[0])} if __name__ == "__main__": uvicorn.run(app, host="0.0.0.0", port=8000, workers=2) ``` #### 四、服务启动与测试 1. 启动服务: ```bash CUDA_VISIBLE_DEVICES=0 python api_server.py ``` 2. 调用测试(Python示例): ```python import requests response = requests.post("http://localhost:8000/generate", json={ "prompt": "解释量子计算基本原理", "max_length": 200 }) print(response.json()) ``` #### 五、注意事项 1. 显存需求:3B模型约需6GB显存,建议使用至少RTX 3060级别GPU 2. 模型加载参数: ```python model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype=torch.float16, # 半精度加速 low_cpu_mem_usage=True ) ``` 3. 安全建议:生产环境需添加API密钥验证[^2]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值