SVM对于高斯核函数的理解

本文探讨了如何使用支持向量机(SVM)处理非线性可分样本的分类问题。通过高斯核函数,SVM能够将样本映射到一个新空间,使得原本难以区分的样本变得线性可分。高斯核在特征多而样本少的数据集上起到了降维的效果,它通过计算样本间的相似度来促进同类样本的聚类,从而实现有效分类。
摘要由CSDN通过智能技术生成

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值