误差分析计算公式及其 matlab 代码实现(mse、mape、rmse等)

本文深入解析了残差平方和(SSE)、均方误差(MSE)、平均绝对误差(MAE)、平均绝对百分比误差(MAPE)、均方根误差(RMSE)及决定系数(R2)等常见误差评估指标的计算公式与代码实现,为模型评估提供了全面指导。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

残差平方和(SSE)

计算公式:

sse

代码实现:

sse = sum((YReal - YPred).^2);

均方误差(MSE)

计算公式:

mse

代码实现:

mse = sqrt(sum((YReal - YPred).^2)) ./ n;

平均绝对误差(MAE)

计算公式:

mae

代码实现:

mae = mean(abs(YReal - YPred));
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

李培冠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值