Review of ODE

Signals and systems——ODE

Time Domain

Classical Method

   The essence of solving linear system is to solve linear constant coefficient system differential equation. This method is called classical method.
   For a general form of constant coefficient differential equations:
C 0 d n d t n r ( t ) + C 1 d n − 1 d t n − 1 r ( t ) + ⋯ + C n − 1 d d t r ( t ) + C n r ( t ) = E 0 d m d t m e ( t ) + E 1 d m − 1 d t m − 1 e ( t ) + ⋯ + E m − 1 d d t e ( t ) + E m e ( t ) C_{0} \frac{d^{n}}{d t^{n}} r(t)+C_{1} \frac{d^{n-1}}{d t^{n-1}} r(t)+\cdots+C_{n-1} \frac{d}{d t} r(t)+C_{n} r(t)=E_{0} \frac{d^{m}}{d t^{m}} e(t)+E_{1} \frac{d^{m-1}}{d t^{m-1}} e(t)+\cdots+E_{m-1} \frac{d}{d t} e(t)+E_{m} e(t) C0dtndnr(t)+C1dtn1dn1r(t)++Cn1dtdr(t)+Cnr(t)=E0dtmdme(t)+E1dtm1dm1e(t)++Em1dtde(t)+Eme(t)
   The solution is of the form
r ( t ) = r h ( t ) + r p ( t ) r(t)=r_{h}(t)+r_{p}(t) r(t)=rh(t)+rp(t)
where r h ( t ) r_{h}(t) rh(t) is the homogeneous solution, r p ( t ) r_{p}(t) rp(t) is the particular solution.
For the homogeneous equation
C 0 d n d t n r ( t ) + C 1 d n − 1 d t n − 1 r ( t ) + ⋯ + C n − 1 d d t r ( t ) + C n r ( t ) = 0 C_{0} \frac{d^{n}}{d t^{n}} r(t)+C_{1} \frac{d^{n-1}}{d t^{n-1}} r(t)+\cdots+C_{n-1} \frac{d}{d t} r(t)+C_{n} r(t)=0 C0dtndnr(t)+C1dtn1dn1r(t)++Cn1dtdr(t)+Cnr(t)=0
We can solve it by analysing the characteristic equation first so that we derive the characteristic roots λ 1 , λ 2 . . . λ n − 1 , λ n \lambda_{1},\lambda_{2}...\lambda_{n-1},\lambda_{n} λ1,λ2...λn1,λn from it.
If these roots are not equal to each other,
r h ( t ) = ∑ i = 1 n A i e λ i t r_{h}(t)=\sum_{i=1}^{n} A_{i} e^{\lambda_{i} t} rh(t)=i=1nAieλit
If there are some multiple roots (Supposing λ 1 \lambda_{1} λ1 is a k k k multiple number root )
r h ( t ) = ( ∑ j = 1 k B j t k − j ) e λ 1 t + ∑ i = k + 1 n A i e λ i t r_{h}(t)=\left(\sum_{j=1}^{k} B_{j} t^{k-j}\right) e^{\lambda_{1} t}+\sum_{i=k+1}^{n} A_{i} e^{\lambda_{i} t} rh(t)=(j=1kBjtkj)eλ1t+i=k+1nAieλit
The particular solution r p ( t ) r_p(t) rp(t) depends on the specific form of the activation function

e ( t ) e(t) e(t) r p ( t ) r_p(t) rp(t)
E E E B B B
t p t^p tp B 1 t p + B 2 t p − 1 + . . . + B p t + B 1 + p B_1t^{p}+B_2t^{p-1}+...+B_pt+B_{1+p} B1tp+B2tp1+...+Bpt+B1+p
e a t e^{at} eat B e a t Be^{at} Beat
c o s ( ω t ) cos(\omega t) cos(ωt) o r or or s i n ( ω t ) sin(\omega t) sin(ωt) B 1 c o s ( ω t ) + B 2 s i n ( ω t ) B_1cos(\omega t)+B_2sin(\omega t) B1cos(ωt)+B2sin(ωt)
t p e a t c o s ( ω t ) t^pe^{at}cos(\omega t) tpeatcos(ωt) o r or or t p e a t s i n ( ω t ) t^pe^{at}sin(\omega t) tpeatsin(ωt) ( B 1 t p + B 2 t p − 1 + . . . + B p t + B 1 + p ) e a t c o s ( ω t ) + ( D 1 t p + D 2 t p − 1 + . . . + D p t + D 1 + p ) e a t s i n ( ω t ) (B_1t^{p}+B_2t^{p-1}+...+B_pt+B_{1+p})e^{at}cos(\omega t)+(D_1t^{p}+D_2t^{p-1}+...+D_pt+D_{1+p})e^{at}sin(\omega t) (B1tp+B2tp1+...+Bpt+B1+p)eatcos(ωt)+(D1tp+D2tp1+...+Dpt+D1+p)eatsin(ωt)
e.g. d 2 r ( t ) d t 2 + 2 d r ( t ) d t + 3 r ( t ) = d e ( t ) d t + e ( t ) , e ( t ) = t 2 \frac{d^{2} r(t)}{d t^{2}}+2 \frac{d r(t)}{d t}+3 r(t)=\frac{d e(t)}{d t}+e(t), e(t)=t^2 dt2d2r(t)+2dtdr(t)+3r(t)=dtde(t)+e(t),e(t)=t2
Solve the characteristic equation
λ 2 + 3 λ + 2 = 0 \lambda^2+3\lambda+2=0 λ2+3λ+2=0
so we can obtain
λ 1 = − 1 , λ 2 = − 2 \lambda_1=-1,\lambda_2=-2 λ1=1,λ2=2
Thus,
r h ( t ) = C 1 e − t + C 2 e − 2 t r_h(t)=C_1e^{-t}+C_2e^{-2t} rh(t)=C1et+C2e2t
as e ( t ) = t 2 e(t)=t^2 e(t)=t2 ,we suppose r p ( t ) = B 1 t 2 + B 2 t + B 3 r_p(t)=B_1t^2+B_2t+B_3 rp(t)=B1t2+B2t+B3
Using method of undetermined coefficients,
r p ( t ) = t 2 − 2 t + 2 r_p(t)=t^2-2t+2 rp(t)=t22t+2

State Variable Method

[ x ˙ 1 x ˙ 2 ⋮ x ˙ n ] = [ a 11 a 12 … a 1 n a 21 a 22 … a 2 n ⋮ ⋮ ⋮ ⋮ a n 1 a n 2 … a n n ] [ x 1 x 2 ⋮ x n ] + [ b 11 b 12 … b 1 m b 21 b 22 … b 2 m ⋮ ⋮ ⋮ ⋮ b n 1 b n 2 … b n m ] [ f 1 f 2 ⋮ f m ] \left[\begin{array}{l} \dot{x}_{1} \\ \dot{x}_{2} \\ \vdots \\ \dot{x}_{n} \end{array}\right]=\left[\begin{array}{cccc} a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n 1} & a_{n 2} & \ldots & a_{n n} \end{array}\right]\left[\begin{array}{l} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{array}\right]+\left[\begin{array}{cccc} b_{11} & b_{12} & \ldots & b_{1 m} \\ b_{21} & b_{22} & \ldots & b_{2 m} \\ \vdots & \vdots & \vdots & \vdots \\ b_{n 1} & b_{n 2} & \ldots & b_{n m} \end{array}\right]\left[\begin{array}{l} f_{1} \\ f_{2} \\ \vdots \\ f_{m} \end{array}\right] x˙1x˙2x˙n=a11a21an1a12a22an2a1na2nannx1x2xn+b11b21bn1b12b22bn2b1mb2mbnmf1f2fm
For example, you could define the x x x variable the current
[ y 1 y 2 ⋮ y n ] = [ c 11 c 12 … c 1 n c 21 c 22 … c 2 n ⋮ ⋮ ⋮ ⋮ c n 1 c n 2 … c n n ] [ x 1 x 2 ⋮ x n ] + [ d 11 d 12 … d 1 m d 21 d 22 … d 2 m ⋮ ⋮ ⋮ ⋮ d n 1 d n 2 … d n m ] [ f 1 f 2 ⋮ f m ] \left[\begin{array}{l} y_{1} \\ y_{2} \\ \vdots \\ y_{n} \end{array}\right]=\left[\begin{array}{cccc} c_{11} & c_{12} & \ldots & c_{1 n} \\ c_{21} & c_{22} & \ldots & c_{2 n} \\ \vdots & \vdots & \vdots & \vdots \\ c_{n 1} & c_{n 2} & \ldots & c_{n n} \end{array}\right]\left[\begin{array}{c} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{array}\right]+\left[\begin{array}{cccc} d_{11} & d_{12} & \ldots & d_{1 m} \\ d_{21} & d_{22} & \ldots & d_{2 m} \\ \vdots & \vdots & \vdots & \vdots \\ d_{n 1} & d_{n 2} & \ldots & d_{n m} \end{array}\right]\left[\begin{array}{l} f_{1} \\ f_{2} \\ \vdots \\ f_{m} \end{array}\right] y1y2yn=c11c21cn1c12c22cn2c1nc2ncnnx1x2xn+d11d21dn1d12d22dn2d1md2mdnmf1f2fm
By this you can solve the whole current equation.

Numerical Method

Each differential equation corresponds to a curve.
The numerical solution of differential equations is essentially to calculate the shape of a curve. This particular curve will have a particular starting point and a particular differential equation. Now suppose we know a starting point, and we can use the equation to figure out the slope of the tangent line of the curve at that point, and then we can follow the tangent line with a small enough displacement to get to the next point, and then use that point as the starting point of the second calculation until we have drawn the whole curve. So, the difference between different numerical methods is how do you get from one point to the next

Euler Method

Take the following differential equation
y ′ ( t ) = f ( t , y ( t ) ) y ( t 0 ) = y 0 y^{\prime}(t)=f(t, y(t)) \quad y\left(t_{0}\right)=y_{0} y(t)=f(t,y(t))y(t0)=y0
at ( t 0 , y ( t 0 ) ) (t_0,y(t_0)) (t0,y(t0)), the equation of the tangent line passing this point is
y − y ( t 0 ) = y ′ ( t 0 ) ( t − t 0 ) = f ( t 0 , y ( t 0 ) ) ( t − t 0 ) y-y\left(t_{0}\right)=y^{\prime}\left(t_{0}\right)\left(t-t_{0}\right)=f\left(t_{0}, y\left(t_{0}\right)\right)\left(t-t_{0}\right) yy(t0)=y(t0)(tt0)=f(t0,y(t0))(tt0)
At the next moment t 1 t_1 t1, points ( t 1 , y ( t 1 ) ) (t_1,y(t_1)) (t1,y(t1)) on the curve can be replaced by points on the tangent line
y ( t 1 ) = y ( t 0 ) + f ( t 0 , y ( t 0 ) ) ( t 1 − t 0 ) y\left(t_{1}\right)=y\left(t_{0}\right)+f\left(t_{0}, y\left(t_{0}\right)\right)\left(t_{1}-t_{0}\right) y(t1)=y(t0)+f(t0,y(t0))(t1t0)
Iteration form
y n + 1 = y n + h f ( t n , y n ) y_{n+1}=y_{n}+h f\left(t_{n}, y_{n}\right) yn+1=yn+hf(tn,yn)

RK-4 Method

Iteration form
y n + 1 = y n + h 6 ( k 1 + 2 k 2 + 2 k 3 + k 4 ) k 1 = f ( t n , y n ) k 2 = f ( t n + h 2 , y n + h 2 k 1 ) k 3 = f ( t n + h 2 , y n + h 2 k 2 ) k 4 = f ( t n + h , y n + h k 3 ) \begin{array}{l} y_{n+1}=y_{n}+ \frac{h}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right) \\ k_{1}=f\left(t_{n}, y_{n}\right) \\ k_{2}=f\left(t_{n}+\frac{h}{2}, y_{n}+\frac{h}{2} k_{1}\right) \\ k_{3}=f\left(t_{n}+\frac{h}{2}, y_{n}+\frac{h}{2} k_{2}\right) \\ k_{4}=f\left(t_{n}+h, y_{n}+h k_{3}\right) \end{array} yn+1=yn+6h(k1+2k2+2k3+k4)k1=f(tn,yn)k2=f(tn+2h,yn+2hk1)k3=f(tn+2h,yn+2hk2)k4=f(tn+h,yn+hk3)
code implementation

def function(x, y):
    f = y**2 - x / y
    return f

def rk4(x0, y0, t, N):
    n = 1
    while (n != N):
        x1 = x0 + t
        k1 = function(x0, y0)
        k2 = function(x0 + t / 2, y0 + t * k1 / 2)
        k3 = function(x0 + t / 2, y0 + t * k2 / 2)
        k4 = function(x1, y0 + t * k3)
        y1 = y0 + t * (k1 + 2 * k2 + 2 * k3 + k4) / 6
        print('%f, %f' %(x1, y1))
        n = n + 1
        x0 = x1
        y0 = y1
        
rk4(1, 2, 0.01, 6)
#lisp-racket 实现龙格库塔算法计算阻尼单摆
(define rk4-pendulum%
  (class pendulum%
    (inherit-field G/L DT Q FD OmegaD)
    (super-new)
    (define/private (domega/dt t omega theta)
      (- 0 (* (sin theta) G/L) (* Q omega) (* -1 FD (sin (* t OmegaD)))))
    (define/private (domega/dt-with-theta theta)
      (lambda (t omega) (domega/dt t omega theta)))
    (define/public (create-pos theta omega t)
      (let ([new-omega (rk4 omega t DT (domega/dt-with-theta theta))])
        (make-pos
         (+ theta (* DT new-omega))
         new-omega
         (+ t DT))))))

Frequency domain

The analysis in the Frequency domain is a little bit more crude than the Time domain analysis ,we just need to take the Fourier transform or the Laplace transform of both sides of this equation, and we get the solution in the Frequency domain , and then we get the solution in the Time domain by using the inverse transformation.

LT

Definition
L [ f ( t ) ] = ∫ 0 ∞ f ( t ) e − s t d t = F ( s ) L[f(t)]=\int_{0}^{\infty} f(t) e^{-s t} d t=F(s) L[f(t)]=0f(t)estdt=F(s)
Inverse Laplace transform
L − 1 [ f ( t ) ] = 1 2 π j ∫ σ − j ∞ σ + j ω F ( s ) e s t d t = f ( t ) L^{-1}[f(t)]=\frac{1}{2 \pi j} \int_{\sigma-j \infty}^{\sigma+j \omega} F(s) e^{s t} d t=f(t) L1[f(t)]=2πj1σjσ+jωF(s)estdt=f(t)
The basic law
1.linear law
L [ a f 1 ( t ) + b f 2 ( t ) ] = a L [ f 1 ( t ) ] + b L [ f 2 ( t ) ] = a F 1 ( s ) + b F 2 ( s ) \begin{array}{l} L\left[a f_{1}(t)+b f_{2}(t)\right] \\ =a L\left[f_{1}(t)\right]+b L\left[f_{2}(t)\right] \\ =a F_{1}(s)+b F_{2}(s) \end{array} L[af1(t)+bf2(t)]=aL[f1(t)]+bL[f2(t)]=aF1(s)+bF2(s)
2.differentiation law
L [ d f ( t ) d t ] = s F ( s ) − f ( 0 ) L [ d 2 f ( t ) d t 2 ] = s 2 F ( s ) − s f ( 0 ) − f ′ ( 0 ) . . . L [ d n f ( t ) d t n ] = s n F ( s ) − s n − 1 f ( 0 ) − s n − 2 f ′ ( 0 ) − ⋯ ⋯ f ( n − 1 ) ( 0 ) \begin{array}{l} L\left[\frac{d f(t)}{d t}\right]=s F(s)-f(0) \\ \\ L\left[\frac{d^{2} f(t)}{d t^{2}}\right]=s^{2} F(s)-s f(0)-f^{\prime}(0) \\ \\ ...\\ \\ L\left[\frac{d^{n} f(t)}{d t^{n}}\right]=s^{n} F(s)-s^{n-1} f(0)-s^{n-2} f^{\prime}(0)-\cdots \cdots f^{(n-1)}(0) \end{array} L[dtdf(t)]=sF(s)f(0)L[dt2d2f(t)]=s2F(s)sf(0)f(0)...L[dtndnf(t)]=snF(s)sn1f(0)sn2f(0)f(n1)(0)
3.Integral law
L [ ∫ 0 t f ( t ) d t ] = 1 s F ( s ) + 1 s f ( − 1 ) ( 0 ) L [ ∭ s f ( t ) ( d t ) 2 ] = 1 s 2 F ( s ) + 1 s 2 f ( − 1 ) ( 0 ) + 1 s f ( − 2 ) ( 0 ) . . . L [ [ ∫ … ∫ f ( t ) ( d t ) n ] ⏟ n = 1 s n F ( s ) + 1 s n f ( − 1 ) ( 0 ) + ⋯ + 1 s f ( − n ) ( 0 ) \begin{array}{c} L\left[\int_{0}^{t} f(t) d t\right]=\frac{1}{s} F(s)+\frac{1}{s} f^{(-1)}(0) \\ \\ L\left[\iiint_{s} f(t)(d t)^{2}\right]=\frac{1}{s^{2}} F(s)+\frac{1}{s^{2}} f^{(-1)}(0)+\frac{1}{s} f^{(-2)}(0) \\ \\ ...\\ \\ L[\underbrace{\left[\int \ldots \int f(t)(d t)^{n}\right]}_{n}=\frac{1}{s^{n}} F(s)+\frac{1}{s^{n}} f^{(-1)}(0)+\cdots+\frac{1}{s} f^{(-n)}(0) \end{array} L[0tf(t)dt]=s1F(s)+s1f(1)(0)L[sf(t)(dt)2]=s21F(s)+s21f(1)(0)+s1f(2)(0)...L[n [f(t)(dt)n]=sn1F(s)+sn1f(1)(0)++s1f(n)(0)

4.lag theorem
L [ f ( t − T ) 1 ( t − T ) ] = e − T s F ( s ) L[f(t-T) 1(t-T)]=e^{-T s} F(s) L[f(tT)1(tT)]=eTsF(s)
5.Attenuation theorem
L [ f ( t ) e − a t ] = F ( s + a ) L\left[f(t) e^{-a t}\right]=F(s+a) L[f(t)eat]=F(s+a)
6.Boundary theorem
lim ⁡ t → ∞ f ( t ) = lim ⁡ s → 0 s F ( s ) \lim _{t \rightarrow \infty} f(t)=\lim _{s \rightarrow 0} s F(s) tlimf(t)=s0limsF(s)
and
lim ⁡ t → 0 f ( t ) = lim ⁡ s → ∞ s F ( s ) \lim _{t \rightarrow 0} f(t)=\lim _{s \rightarrow \infty} s F(s) t0limf(t)=slimsF(s)

F ( s ) − T a b l e F(s)-Table F(s)Table

f ( t ) f(t) f(t) F ( s ) F(s) F(s)
δ ( t ) \delta(t) δ(t) 1 1 1
1 ( t ) 1(t) 1(t) 1 s \frac{1}{s} s1
δ r ( t ) = ∑ n = 0 ∞ δ ( t − n T ) \delta_{r}(t)=\sum_{n=0}^{\infty} \delta(t-n T) δr(t)=n=0δ(tnT) 1 1 − e − T s \frac{1}{1-e^{-T s}} 1eTs1
t t t 1 s 2 \frac{1}{s^2} s21
t 2 2 \frac{t^2}{2} 2t2 1 s 3 \frac{1}{s^3} s31
t n n ! \frac{t^n}{n!} n!tn 1 s n + 1 \frac{1}{s^{n+1}} sn+11
e − a t e^{-at} eat 1 s + a \frac{1}{s+a} s+a1
a t T a^\frac{t}{T} aTt 1 s − ( 1 / T ) ln ⁡ a \frac{1}{s-(1/T)\ln{a}} s(1/T)lna1
t e − a t te^{-at} teat 1 ( s + a ) 2 \frac{1}{(s+a)^2} (s+a)21
1 − e − a t 1-e^{-at} 1eat a s ( s + a ) \frac{a}{s(s+a)} s(s+a)a
e − a t − e − b t e^{-at}-e^{-bt} eatebt b − a ( s + a ) ( s + b ) \frac{b-a}{(s+a)(s+b)} (s+a)(s+b)ba
sin ⁡ ( ω t ) \sin(\omega t) sin(ωt) ω s 2 + ω 2 \frac{\omega}{s^2+\omega^2} s2+ω2ω
cos ⁡ ( ω t ) \cos(\omega t) cos(ωt) s s 2 + ω 2 \frac{s}{s^2+\omega^2} s2+ω2s
e − a t sin ⁡ ( ω t ) e^{-at}\sin(\omega t) eatsin(ωt) ω ( s + a ) 2 + ω 2 \frac{\omega}{(s+a)^2+\omega^2} (s+a)2+ω2ω
e − a t cos ⁡ ( ω t ) e^{-at}\cos(\omega t) eatcos(ωt) s + a ( s + a ) 2 + ω 2 \frac{s+a}{(s+a)^2+\omega^2} (s+a)2+ω2s+a

F ( s ) ⟶ f ( t ) F(s)\longrightarrow f(t) F(s)f(t)
F ( s ) = B ( s ) A ( s ) = b m s m + b m − 1 s m − 1 + ⋯ + b 1 s + b 0 a n s n + a n − 1 s n − 1 + ⋯ + a 1 s + a 0 ( n > m ) F(s)=\frac{B(s)}{A(s)}=\frac{b_{m} s^{m}+b_{m-1} s^{m-1}+\cdots+b_{1} s+b_{0}}{a_{n} s^{n}+a_{n-1} s^{n-1}+\cdots+a_{1} s+a_{0}} (n>m) F(s)=A(s)B(s)=ansn+an1sn1++a1s+a0bmsm+bm1sm1++b1s+b0(n>m)
 (1)  A ( s ) = 0 \text { (1) } A(s)=0  (1) A(s)=0 no multiple root
F ( s ) = c 1 s − s 1 + c 2 s − s 2 + ⋯ + c i s − s i + ⋯ + c n s − s n = ∑ i = 1 n c i s − s i F(s)=\frac{c_{1}}{s-s_{1}}+\frac{c_{2}}{s-s_{2}}+\cdots+\frac{c_{i}}{s-s_{i}}+\cdots+\frac{c_{n}}{s-s_{n}}=\sum_{i=1}^{n} \frac{c_{i}}{s-s_{i}} F(s)=ss1c1+ss2c2++ssici++ssncn=i=1nssici
L − 1 [ F ( s ) ] = f ( t ) = L − 1 [ ∑ i = 1 n C i s − s i ] = ∑ i = 1 n C i e s i t C i = lim ⁡ s → s i ( s − s i ) ⋅ F ( s ) \begin{array}{l} L^{-1}[F(s)]=f(t)=L^{-1}\left[\sum_{i=1}^{n} \frac{C_{i}}{s-s_{i}}\right]=\sum_{i=1}^{n} C_{i} e^{s_{i} t} \\ \\ C_{i}=\lim_{s \to s_{i}}(s-s_{i}) \cdot F(s) \end{array} L1[F(s)]=f(t)=L1[i=1nssiCi]=i=1nCiesitCi=limssi(ssi)F(s)
 (2)  A ( s ) = 0 \text { (2) } A(s)=0  (2) A(s)=0 with multiple roots
F ( s ) = B ( s ) ( s − s 1 ) r ( s − s r + 1 ) ⋯ ( s − s n ) F(s)=\frac{B(s)}{\left(s-s_{1}\right)^{r}\left(s-s_{r+1}\right) \cdots\left(s-s_{n}\right)} F(s)=(ss1)r(ssr+1)(ssn)B(s)

c r = lim ⁡ s → s 1 ( s − s 1 ) r F ( s ) c r − 1 = lim ⁡ s → s 1 d d s ( s − s 1 ) r F ( s ) . . . . . . c r − j = 1 j ! lim ⁡ s → s 1 d ( j ) d s ( s − s 1 ) r F ( s ) c 1 = 1 ( r − 1 ) ! lim ⁡ s → s 1 d ( r − 1 ) d s ( r − 1 ) ( s − s 1 ) r F ( s ) \begin{array}{c} c_{r}=\lim_{s \rightarrow s_{1}}\left(s-s_{1}\right)^{r} F(s) \\ \\ c_{r-1}=\lim_{s \rightarrow s_{1}}\frac{d}{d s}\left(s-s_{1}\right)^{r} F(s) \\ \\ ......\\ \\ c_{r-j}=\frac{1}{j !} \lim_{s \rightarrow s_{1}} \frac{d^{(j)}}{d s}\left(s-s_{1}\right)^{r} F(s) \\ \\ c_{1}=\frac{1}{(r-1) !} \lim _{s \rightarrow s_{1}} \frac{d^{(r-1)}}{d s^{(r-1)}}\left(s-s_{1}\right)^{r} F(s) \end{array} cr=limss1(ss1)rF(s)cr1=limss1dsd(ss1)rF(s)......crj=j!1limss1dsd(j)(ss1)rF(s)c1=(r1)!1limss1ds(r1)d(r1)(ss1)rF(s)

FT

Not commonly used

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值