NNDL 作业12:第七章课后题

目录

习题7-1 在小批量梯度下降中,试分析为什么学习率要和批量大小成正比.

习题7-2 在Adam算法中,说明指数加权平均的偏差修正的合理性(即公式(7.27)和公式(7.28)).

习题7-9证明在标准的随机梯度下降中,权重衰减正则化和l2正则化的效果相同.并分析这一结论在动量法和Adam算法中是否依然成立.

总结


习题7-1 在小批量梯度下降中,试分析为什么学习率要和批量大小成正比.

在使用小批量梯度下降进行优化时,每次选取K个训练样本S_t=\left \{ (x^{(k)},y^{(k)}) \right \}^K_{k=1}。第t次迭代时损失函数关于参数\theta的偏导数为

g_t(\theta)=\frac{1}{K}\sum_{(x,y)\in s_t}\frac{\partial \pounds (y,f(x;\theta))}{\partial \theta}

第t次更新的梯度g_t定义为g_t = g_t(\theta_{t-1})

每次迭代时参数更新:\Delta \theta_t = \theta_t-\theta_{t-1} = -\alpha g_t

\theta代入上式可以发现K与\theta成正比。

习题7-2 在Adam算法中,说明指数加权平均的偏差修正的合理性(即公式(7.27)和公式(7.28)).

公式7.27:\hat{M}_t=\frac{M_t}{1-\beta_1^t}

公式7.28:\hat{G}_t=\frac{G_t}{1-\beta_2^t}

在Adam算法中:
M_t = \beta_1 M_{t-1}+(1-\beta_1)g_t

G_t = \beta_2 G_{t-1} + (1-\beta_2)\odot g_t

\beta_1\rightarrow 1\beta_2 \rightarrow 1的时候

\lim_{\beta_1\rightarrow 1} M_t = M_{t-1}

\lim_{\beta_2\rightarrow 1} G_t = G_{t-1}

此时可以发现梯度消失,因此需要进行偏差修正

习题7-9证明在标准的随机梯度下降中,权重衰减正则化和l2正则化的效果相同.并分析这一结论在动量法和Adam算法中是否依然成立.

L2正则化和权值衰减并不是一回事,但是可以根据学习率对权值衰减因子进行重新参数化,从而使SGD等价。

以λ为衰减因子,给出了权值衰减方程。

 在以下证明中可以证明L2正则化等价于SGD情况下的权值衰减:

首先考虑下面图中给出的L2正则化方程。我们的目标是对它进行重新参数化,使其等价于上式中给出的权值衰减方程

 找到L2正则化损失函数相对于参数w的偏导数(梯度),如下式所示。

得到损失函数的偏导数结果后,将结果代入梯度下降学习规则中,如下式所示。代入后,打开括号,重新排列,使其等价于在一定假设下的权值衰减方程。

 可以注意到,最终重新排列的L2正则化方程和权值衰减方程之间的唯一区别是α(学习率)乘以λ(正则化项)。为了得到两个方程,我们用λ来重新参数化L2正则化方程。

将λ'替换为λ,对L2正则化方程进行重新参数化,将其等价于权值衰减方程,如下式所示。

 从上面的证明中,你必须理解为什么L2正则化在SGD情况下被认为等同于权值衰减,但对于其他基于自适应梯度的优化算法,如Adam, AdaGrad等,却不是这样。特别是,当与自适应梯度相结合时,L2正则化导致具有较大历史参数和/或梯度振幅的权值比使用权值衰减时正则化得更少。这导致与SGD相比,当使用L2正则化时adam表现不佳。另一方面,权值衰减在SGD和Adam身上表现得一样好。

总结

 作为本学期最后一课的内容,也算是完美收官了,到家以后的学习效率明显不如在学校,毕竟家就是家嘛,总让人想偷会儿懒,虽说完成的时间晚了一点,但是写的时候还是比较认真的,画了这么多的思维导图,也画出经验了哈哈,相比于一开始不知道画什么好,现在可以说是手到擒来,同时画的时候也是对自己的知识进行一次梳理,也方便了以后复习反复观看,最后感谢老师一学期的持续督促,也感谢自己的坚持吧哈哈

参考链接:权值衰减和 L2 正则化傻傻分不清楚?

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

HBU_fangerfang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值