kaggle中关于图像的比赛整理

本文整理了Kaggle中涉及图像的各种比赛,包括图像分割、图像分类、目标检测、目标检索和图像理解等任务。例如,图像分割挑战如CVPR 2018 WAD Video Segmentation Challenge和Carvana Image Masking Challenge;图像分类比赛如iNaturalist Challenge和Dog Breed Identification等;目标检测比赛如Google Landmark Recognition Challenge和Invasive Species Monitoring等。这些比赛涵盖了从自然风光到医学影像等多种应用场景,旨在推动图像处理技术的发展。
摘要由CSDN通过智能技术生成

传送门:https://www.kaggle.com/competitions点击打开链接

world文档下载地址:https://download.csdn.net/download/qq_33614902/10482467点击打开链接

一、图像

图像分割

1、CVPR 2018 WAD VideoSegmentation Challenge

将车辆拍摄的图像帧中的每个物体进行分割。

2、Carvana ImageMasking Challenge

自动识别图像中汽车的边界。

要求:开发一种自动删除照相馆背景的算法。

 

图像分类

1、iNaturalistChallenge at FGVC5

长尾物种分类。

iNat Challenge 2018数据集包含8,000多种物种,450k张图像。

评估:每张图片可以预测3个类别标签。击中误差为0,否则误差为1。

2、iMaterialistChallenge (Fashion) at FGVC5

根据图片识别出时尚产品所属类别。

评估:使用Mean F1 得分。

3、iMaterialistChallenge (Furniture) at FGVC5

家具和家居用品的图像分类。

每张图片只能预测一个类别。

4、Plant Seedlings Classification

从图像中确定植物幼苗的种类。

5、Dog BreedIdentification

确定狗的品种。

要求:对于每个图像,必须预测每个不同品种的概率。

6、Cdiscount’s ImageClassification Challenge

根据图像预测产品的类别。

7、NIPS 2017:Non-targeted Adversarial Attack

非针对性攻击的目标是稍微修改源图像,使得图像将被一般未知的机器学习分类器错误地分类。

8、NIPS 2017: TargetedAdversarial Attack

目标攻击的目标是稍微修改源图像,使得图像将被一般未知的机器学习分类器分类为指

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值