Federated Feature Augmentation and Alignment

TPAMI2025,说是解决特征偏移问题,但从实验看其他数据异构也一并改善了。文章和题目一样干了特征增强和特征对齐两件事。特征增强部分套了两次高斯拟合,搞得很复杂,没法一句话说清楚。特征对齐部分是截断成直方图,然后双向KL散度。

论文:目前好像只有ieee能搜到
代码:只找到ICLR2023的会议版本

贡献

  1. FedFA+算法:我们解决基于异构 FL 的问题探索特征统计。首先,我们引入了 FedFA-l来降低局部数据集偏差的影响。它基于低阶特征统计的原则性概率建模,有助于更广泛地探索特征空间。其次,我们提出了 FedFA-h,它能够强化通过明确调整高阶特征统计数据,确保客户端之间增强特征的一致性。
  2. 理论分析:我们提供严格的理论分析FedFA-l 的分析表明,它通过规范潜在表示的梯度,隐式地将正则化引入局部模型学习,并通过从整个联合中得出的特征统计方差进行加权。
  3. 实验分析:通过对五个基准测试中,我们展示了 FedFA+ 在以下方面的优势:(i)对不同类型异质性的鲁棒性,
    (ii)对新的(未见过的)测试客户端的推广,
    (iii)处理极小的本地数据集和数千个客户端。
    标签异构、特征异构、多客户端少样本、

动机

在先前的研究中发现,一阶/二阶特征统计量能够囊括关键的领域感知特征,因此可以将其视为“参与联邦的客户的特征”。作者认为联邦学习中的特征偏移问题可以解释为这些低阶特征统计量的偏移,而不论偏移的来源是什么。联想到可以通过多元高斯分布对增强过程进行建模。均值设置为原始统计量,方差为覆盖潜在的分布偏移,则可以从高斯分布中抽取样本合成新的统计量。重点就是这个高斯分布要怎么取。
如果仅依赖于低阶统计量,这限制了其充分捕捉高维特征表示复杂性的能力。此外,它只专注于在特征空间内促进探索,而没有明确解决域对齐问题。需要估计一个涵盖所有客户端的全局高阶特征统计量,该统计量作为每个客户端都需要与之对齐的目标分布。

算法-FedFA l ^l l

概率一阶/二阶统计建模:

FedFA l ^l l 属于标签保持特征增强的范畴。在训练过程中,它为每个客户端 m m m 的每个卷积层 h k h^k hk 估计一个邻近分布 V m k \mathbb{V}_m^k Vmk,随后用于增强相应的潜在特征。

X m k ∈ R B × C × H × W X_m^k \in \mathbb{R}^{B \times C \times H \times W} XmkRB×C×H×W 表示为 B B B 个mini-batch图像的中间特征表示,空间大小为 ( H × W ) (H \times W) (H×W),通道数为 C C C Y m k Y_m^k Ymk 为相应的标签。 V m k \mathbb{V}_m^k Vmk 是标签保持的,因为 V m k ( X ^ m k , Y ^ m k ∣ X m k , Y m k ) ≜ V m k ( X ^ m k ∣ X m k ) δ ( Y ^ m k = Y m k ) \mathbb{V}_m^k(\hat{X}_m^k, \hat{Y}_m^k | X_m^k, Y_m^k) \triangleq \mathbb{V}_m^k(\hat{X}_m^k | X_m^k) \delta(\hat{Y}_m^k = Y_m^k) Vmk(X^mk,Y^mkXmk,Ymk)Vmk(X^mkXmk)δ(Y^mk=Ymk),即它仅转换潜在特征 X m k X_m^k Xmk X ^ m k \hat{X}_m^k X^mk,但标签 Y m k Y_m^k Ymk 保持不变。

我们的方法不是显式建模 V m k ( X ^ m k ∣ X m k ) \mathbb{V}_m^k(\hat{X}_m^k | X_m^k) Vmk(X^mkXmk),而是通过操控通道特征统计来进行隐式特征增强。具体来说,对于 X m k X_m^k Xmk,其通道的一阶/二阶统计量,即均值 μ m k \mu_m^k μmk 和标准差 σ m k \sigma_m^k σmk,计算如下:

μ m k = 1 H W ∑ h = 1 H ∑ w = 1 W X m k ( h , w ) ∈ R B × C ,       σ m k = 1 H W ∑ h = 1 H ∑ w = 1 W ( X m k ( h , w ) − μ m k ) 2 ∈ R B × C , \mu_m^k = \frac{1}{HW} \sum_{h=1}^{H} \sum_{w=1}^{W} X_m^k(h, w) \in \mathbb{R}^{B \times C}, \space \space \space \space \space \sigma_m^k = \sqrt{\frac{1}{HW} \sum_{h=1}^{H} \sum_{w=1}^{W} (X_m^k(h, w) - \mu_m^k)^2} \in \mathbb{R}^{B \times C}, μmk=HW1h=1Hw=1WXmk(h,w)RB×C,     σmk=HW1h=1Hw=1W(Xmk(h,w)μmk)2 RB×C,

其中 X m k ( h , w ) ∈ R B × C X_m^k(h, w) \in \mathbb{R}^{B \times C} Xmk(h,w)RB×C 表示空间位置 ( h , w ) (h, w) (h,w) 的特征。作为潜在特征的抽象,这些统计量携带领域特定的信息(例如,风格),并且对于图像生成至关重要。它们最近也被用于数据增强以提高图像识别能力。

在异构的联邦学习场景中,本地客户端之间的特征统计将不一致,并表现出未知的特征统计从真实分布的统计中偏移。我们的方法通过概率建模明确捕捉这种偏移。具体来说,我们不是用确定性统计 { μ m k , σ m k } \{\mu_m^k, \sigma_m^k\} { μmk,σmk} 来表示每个特征 X m k X_m^k Xmk,而是假设该特征基于概率统计 { μ ^ m k , σ ^ m k } \{\hat{\mu}_m^k, \hat{\sigma}_m^k\} { μ^mk,σ^mk} 进行条件化,这些统计是从原始统计的邻近区域采样的,基于多变量高斯分布:

μ ^ m k ∼ N ( μ m k , Σ ^ μ m k 2 ) , σ ^ m k ∼ N ( σ m k , Σ ^ σ m k 2 ) . \hat{\mu}_m^k \sim \mathcal{N} \left( \mu_m^k, \hat{\Sigma}_{\mu_m^k}^2 \right), \quad \hat{\sigma}_m^k \sim \mathcal{N} \left( \sigma_m^k, \hat{\Sigma}_{\sigma_m^k}^2 \right). μ^mkN(μmk,Σ^μmk2),σ^mkN(σmk,Σ^σmk2).

这里,每个高斯分布的中心对应于原始统计,而方差则期望捕捉从真实分布的潜在特征统计偏移。我们的核心目标是估计适当的方差 Σ ^ μ m k 2 \hat{\Sigma}_{\mu_m^k}^2 Σ^μmk2 Σ ^ σ m k 2 \hat{\Sigma}_{\sigma_m^k}^2 Σ^σmk2,以便于进行合理且信息丰富的增强。

我们的方法通过三个主要步骤实现这一点:(i) 客户端特定的统计方差估计,确定每个客户端内的局部方差;(ii) 客户端共享的统计方差估计,确定整个联邦的全局方差;(iii) 自适应方差融合,结合局部和全局方差以产生更有意义的估计。

客户端特定的统计方差估计:

在客户端一侧,我们根据每个mini-batch中的信息计算特征统计的客户端特定方差:

Σ μ m k 2 = 1 B ∑ b = 1 B ( μ m k , ( b ) − E B [ μ m k ] ) 2 ∈ R C ,       Σ σ m k 2 = 1 B ∑ b = 1 B ( σ m k , ( b ) − E B [ σ m k ] ) 2 ∈ R C , \Sigma_{\mu_m^k}^2 = \frac{1}{B} \sum_{b=1}^{B} (\mu_m^{k,(b)} - \mathbb{E}_B[\mu_m^k])^2 \in \mathbb{R}^C, \space \space \space \space \space \Sigma_{\sigma_m^k}^2 = \frac{1}{B} \sum_{b=1}^{B} (\sigma_m^{k,(b)} - \mathbb{E}_B[\sigma_m^k])^2 \in \mathbb{R}^C, Σμmk2=B1b=1B(μmk,(b)EB[μmk])2RC,     Σσmk2=B1b=1B(σmk,(b)EB[σmk])2RC,
其中, μ m k , ( b ) ∈ R C \mu_m^{k,(b)} \in \mathbb{R}^C μmk,(b)RC σ m k , ( b ) ∈ R C \sigma_m^{k,(b)} \in \mathbb{R}^C σmk,(b)RC 分别表示第 b b b 个图像的特征均值和标准差。 E B [ ⋅ ] \mathbb{E}_B[\cdot] EB[] 计算沿批次维度的期望值。 Σ μ m k 2 \Sigma_{\mu_m^k}^2 Σμmk2 Σ σ m k 2 \Sigma_{\sigma_m^k}^2 Σσmk2 表示特定于每个客户端的特征均值 μ m k \mu_m^k μmk 和标准差 σ m k \sigma_m^k σmk 的方差。 Σ μ m k 2 \Sigma_{\mu_m^k}^2 Σμmk2 Σ σ m k 2 \Sigma_{\sigma_m^k}^2 Σσm

内容概要:本文深入探讨了AMESim仿真平台在电动汽车(EV)热泵空调系统设计与优化中的应用。首先介绍了AMESim的基础建模方法,如构建制冷循环模型中的压缩机、蒸发器和冷凝器等组件,并详细解释了各部件的工作原理及其参数设定。接着重点阐述了EV热泵空调系统的特殊之处,即不仅能够制冷还可以在冬季提供高效的制热功能,这对于提高电动汽车在寒冷条件下的续航里程和乘坐舒适性非常重要。文中给出了几个具体的案例,包括通过改变压缩机运行频率来进行性能优化,以及针对低温环境下热泵系统的控制策略,如四通阀切换逻辑、电子膨胀阀开度调节等。此外,还讨论了热泵系统与其他子系统(如电池温控)之间的协同工作方式,强调了系统集成的重要性。最后分享了一些实用的经验技巧,例如如何避免仿真过程中可能出现的问题,怎样评估系统的整体性能等。 适合人群:从事汽车工程、暖通空调(HVAC)领域的研究人员和技术人员,特别是关注新能源汽车热管理系统的专业人士。 使用场景及目标:适用于希望深入了解电动汽车热泵空调系统特性的工程师们,旨在帮助他们掌握基于AMESim进行系统建模、仿真分析的方法论,以便更好地指导实际产品研发。 阅读建议:由于涉及到较多的专业术语和技术细节,建议读者具备一定的机械工程背景知识,同时配合官方文档或其他参考资料一起研读,以加深理解。
期末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目),个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做大作业的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 期末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)期末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)期末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)期末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)期末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)期末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)期末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)期末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)期末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)期末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)期末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)期末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)期末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)期末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)期末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)期末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)期末作
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值