Space: 列空间,零空间

本文探讨了线性代数中的列空间和零空间概念。列空间是指矩阵A所有列向量生成的子空间,而零空间是齐次方程Ax=0的解构成的子空间。列空间的性质表明,如果Ax=b有解,那么b必须在列空间内。零空间则是所有满足Ax=0的x向量组成的直线。证明了零空间是一个子空间,因为解的线性组合仍为解。
摘要由CSDN通过智能技术生成

1 子空间的交集    (Lec6)

  • 结论:设有$$R^{3}$$上的子空间S和T,取两者的交,交仍为一个(子)空间

不严谨证明:

设v,w为S与T交集上的向量,因而v,w即属于S也属于T

对于S来说,v和w都是S的向量,则对v和w做线性组合一定在S内

同理对T来说,v与w也是T的向量,则v和w的线性组合也在T内

v和w的线性组合同时在S和T上,即v和w的线性组合在S与T的交内

即S和T的交满足加法和数乘封闭,是子空间

2 列空间    (Lec6)

对于一个m*n(列向量有m维)矩阵A,其列空间记为C(A),是一个$R^{m}的子空间;其一组基为A的列向量的最大线性无关组

Q1:给定矩阵A 

\begin{bmatrix}

 1\  1\ 2 \\ 
 2\  1 \ 3 \\ 
 3\  1 \ 4 \\
 4\  1\  5
\end{bmatrix}

是否对于任意的R^{4}上的b,方程Ax=b都有解?

问题有两个等价说法:

  • 换言之,是指对于任意的属于R^{4}上的b,都在A的列空间(R^{4}的子空间)中吗?
  • 既然b是R^{4}上任意的向量,那么A的列所生成的空间(列空间)需要充满整个R^{4}才能保证Ax=b永远有解,那么A真的是R^{4}本身吗?
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值