1. 向量空间性质
在空间上任取向量
A
→
,
B
→
\overrightarrow{A},\overrightarrow{B}
A,B
A
→
≠
k
B
→
\overrightarrow{A} \ne k \overrightarrow{B}
A=kB
满足向量
v
A
→
+
w
B
→
v\overrightarrow{A}+w\overrightarrow{B}
vA+wB
都在空间上。
2. 列空间
A
=
[
1
1
2
2
1
3
3
1
4
4
1
5
]
A= \begin{bmatrix} 1 & 1 & 2\\ 2 & 1 & 3 \\ 3 & 1 & 4\\ 4 & 1 & 5 \end{bmatrix}
A=
123411112345
C
(
A
)
⊂
R
4
C_{(A)} \subset R^4
C(A)⊂R4
- 是否所有的方程组
A
X
=
B
AX=B
AX=B都有解?
当然不是 。
A X = B [ 1 1 2 2 1 3 3 1 4 4 1 5 ] [ x y z ] = [ b 1 b 2 b 3 b 4 ] AX=B\\ \begin{bmatrix} 1 & 1 & 2\\ 2 & 1 & 3 \\ 3 & 1 & 4\\ 4 & 1 & 5 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}= \begin{bmatrix} b_1\\b_2\\b_3\\b_4 \end{bmatrix} AX=B 123411112345 xyz = b1b2b3b4
- 什么样的 B B B能使得上式中有解呢?
B
=
0
B =0
B=0时显然有解。
x
1
=
[
0
0
0
]
x
2
=
[
1
1
−
1
]
x_1= \begin{bmatrix} 0\\0\\0 \end{bmatrix} x_2= \begin{bmatrix} 1\\1\\-1 \end{bmatrix}
x1=
000
x2=
11−1
B
=
v
C
1
+
w
C
2
+
z
C
3
B=vC_{1}+wC_{2}+zC_{3}
B=vC1+wC2+zC3
当
B
⊆
C
(
A
)
B \subseteq C_{(A)}
B⊆C(A)时,
A
X
=
B
AX=B
AX=B有解。
这里矩阵 A A A不是每个列空间都对矩阵空间有贡献。
因为
C
1
+
C
2
=
C
3
C_1+C_2=C_3
C1+C2=C3
所以只有两列对矩阵的列空间有贡献。
3. 零空间
矩阵 A A A的零空间,指 B = 0 B=0 B=0的所有 X X X的解。
A X = [ 1 1 2 2 1 3 3 1 4 4 1 5 ] [ ] = [ 0 0 0 0 ] AX= \begin{bmatrix} 1 & 1 & 2\\ 2 & 1 & 3 \\ 3 & 1 & 4\\ 4 & 1 & 5 \end{bmatrix} \begin{bmatrix} \\ \\ \\ \end{bmatrix}= \begin{bmatrix} 0\\0\\0\\0 \end{bmatrix} AX= 123411112345 = 0000
显然
[
0
0
0
]
\begin{bmatrix} 0\\0\\0 \end{bmatrix}
000
属于
N
(
A
)
N_{(A)}
N(A)
[
1
1
−
1
]
\begin{bmatrix} 1 \\ 1\\-1 \end{bmatrix}
11−1
也属于
N
(
A
)
N_{(A)}
N(A)
给定一个通解
k
[
1
1
−
1
]
k \begin{bmatrix} 1\\ 1\\ -1\\ \end{bmatrix}
k
11−1
证明:
向量的零空间总是构成子空间?
A u = 0 A v = 0 A u + A v = A ( u + v ) = 0 Au=0\\Av=0\\ Au+Av=A(u+v)=0 Au=0Av=0Au+Av=A(u+v)=0
若
B
≠
0
B \ne 0
B=0,方程的解一定不能构成子空间。
因为
X
=
0
X=0
X=0时,并不满足条件。