线性代数笔记6--列空间和零空间

本文探讨了向量空间中向量的线性组合、列空间的定义及其在矩阵方程组中的应用,强调了零空间作为子空间的性质以及非零向量B如何影响方程组解的存在性。
摘要由CSDN通过智能技术生成

1. 向量空间性质

在空间上任取向量 A → , B → \overrightarrow{A},\overrightarrow{B} A ,B
A → ≠ k B → \overrightarrow{A} \ne k \overrightarrow{B} A =kB
满足向量
v A → + w B → v\overrightarrow{A}+w\overrightarrow{B} vA +wB
都在空间上。

2. 列空间

A = [ 1 1 2 2 1 3 3 1 4 4 1 5 ] A= \begin{bmatrix} 1 & 1 & 2\\ 2 & 1 & 3 \\ 3 & 1 & 4\\ 4 & 1 & 5 \end{bmatrix} A= 123411112345
C ( A ) ⊂ R 4 C_{(A)} \subset R^4 C(A)R4

  • 是否所有的方程组 A X = B AX=B AX=B都有解?
    当然不是 。

A X = B [ 1 1 2 2 1 3 3 1 4 4 1 5 ] [ x y z ] = [ b 1 b 2 b 3 b 4 ] AX=B\\ \begin{bmatrix} 1 & 1 & 2\\ 2 & 1 & 3 \\ 3 & 1 & 4\\ 4 & 1 & 5 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}= \begin{bmatrix} b_1\\b_2\\b_3\\b_4 \end{bmatrix} AX=B 123411112345 xyz = b1b2b3b4

  • 什么样的 B B B能使得上式中有解呢?

B = 0 B =0 B=0时显然有解。
x 1 = [ 0 0 0 ] x 2 = [ 1 1 − 1 ] x_1= \begin{bmatrix} 0\\0\\0 \end{bmatrix} x_2= \begin{bmatrix} 1\\1\\-1 \end{bmatrix} x1= 000 x2= 111
B = v C 1 + w C 2 + z C 3 B=vC_{1}+wC_{2}+zC_{3} B=vC1+wC2+zC3
B ⊆ C ( A ) B \subseteq C_{(A)} BC(A)时, A X = B AX=B AX=B有解。

这里矩阵 A A A不是每个列空间都对矩阵空间有贡献。

因为
C 1 + C 2 = C 3 C_1+C_2=C_3 C1+C2=C3
所以只有两列对矩阵的列空间有贡献。

3. 零空间

矩阵 A A A的零空间,指 B = 0 B=0 B=0的所有 X X X的解。

A X = [ 1 1 2 2 1 3 3 1 4 4 1 5 ] [ ] = [ 0 0 0 0 ] AX= \begin{bmatrix} 1 & 1 & 2\\ 2 & 1 & 3 \\ 3 & 1 & 4\\ 4 & 1 & 5 \end{bmatrix} \begin{bmatrix} \\ \\ \\ \end{bmatrix}= \begin{bmatrix} 0\\0\\0\\0 \end{bmatrix} AX= 123411112345 = 0000

显然
[ 0 0 0 ] \begin{bmatrix} 0\\0\\0 \end{bmatrix} 000
属于 N ( A ) N_{(A)} N(A)

[ 1 1 − 1 ] \begin{bmatrix} 1 \\ 1\\-1 \end{bmatrix} 111
也属于 N ( A ) N_{(A)} N(A)

给定一个通解
k [ 1 1 − 1 ] k \begin{bmatrix} 1\\ 1\\ -1\\ \end{bmatrix} k 111

证明:
向量的零空间总是构成子空间?

A u = 0 A v = 0 A u + A v = A ( u + v ) = 0 Au=0\\Av=0\\ Au+Av=A(u+v)=0 Au=0Av=0Au+Av=A(u+v)=0

B ≠ 0 B \ne 0 B=0,方程的解一定不能构成子空间。
因为 X = 0 X=0 X=0时,并不满足条件。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值