2025年认证杯C题论文首发+思路分享

26页  1万字

完整版售后群 写手老师随时答疑

图片

化工厂生产流程的预测和控制

在化工厂的生产流程中,往往涉及到多个反应釜、管道和储罐等设备。在流水线上也有每个位置的温度、压力、流量等诸多参数。只有参数处于正常范 围时,最终的产物才是合格的。这些参数很容易受到外部随机因素的干扰,所以需要实时调控。但由于参数众多,测量困难,很多参数想要及时调整并不容易,而且有很多参数之间互相关联,想要确定应当如何调控也是一个不容易解决的问题。所以在化工厂的运营过程中,人们很重视使用数学模型来对生产流程的情况进行推算和预测。理想的状态是我们只测量少数容易测量的变量,如最终产物的成分;只控制少数几个容易控制的参数,如某些原料的输入速率,通过数学模型推知反应链的整体情况并予以适当的控制。

针对问题1,首先对数据进行预处理,去除异常值数据并对数据进行标准化。对于某化工厂脱硫工艺流程中的污染控制问题,采用输入端有 5 种原料气体(IN1~IN5)的数据与输出端检测二氧化硫(SO₂)和硫化氢(H₂S)浓度的数据,基于线性回归、随机森林回归与XGBoost 回归建立预测模型,根据原料输入特征,精准预测 SO₂和 H₂S 浓度值,辅助企业调控气流输入,降低污染物浓度。

针对问题2,要求根据从开始直至时刻t的输入数据和输出数据,预测在t + 10到 t + 70个时间单位之间的输出数据是否会出现不合格的问题,并在保证预测正确率的前提下,阈值尽可能小。该问题可以结合预测模型的性能,优化迭代寻找能保证准确性且最小的k₁和k₂,然后以t时刻为基准,利用之前的数据特征预测(t+10)到(t+70)的数据,采用LightGBM进行数据的构建与预测。

针对问题3,利用滑动窗口提取历史10个时间步内的输入(IN1~IN5)和输出(SO2、H2S)作为特征,扫描未来窗口内是否存在污染物超标,并记录首次超标的时间点作为回归目标。随后,分别训练了 KNN、线性回归、随机森林、XGBoost 和 MLP 神经网络等模型,评估其在预测未来首次不合格时间上的表现,并通过误差指标(MAE 和 RMSE)对比分析,确定最优模型。

关键词:随机森林,XGBoost,LightGBM,KNN;MLP;预测控制;

一、问题求解与分析

4.1 问题1求解与分析

4.1.1 问题1分析

针对问题1,首先对数据进行预处理,去除异常值数据并对数据进行标准化。对于某化工厂脱硫工艺流程中的污染控制问题,采用输入端有 5 种原料气体(IN1~IN5)的数据与输出端检测二氧化硫(SO₂)和硫化氢(H₂S)浓度的数据,基于线性回归、随机森林回归与XGBoost 回归建立预测模型,根据原料输入特征,精准预测 SO₂和 H₂S 浓度值,辅助企业调控气流输入,降低污染物浓度。

4.1.2 问题1建模与求解

1、数据预处理

针对我们给出的附件的数据,首先要做的就是对数据进行预处理操作。数据清洗是数据预处理的关键步骤,旨在确保数据的完整性和准确性。首先,对数据集进行缺失值检查,统计结果显示所有变量(IN1、IN2、IN3、IN4、IN5、SO2、H2S)的缺失值均为0,表明数据完整,无需填充或删除操作。其次,通过箱线图分析输入和输出特征的异常值分布情况。从图1中可见,部分输入特征(如IN1至IN5)和输出特征存在明显的异常值(如数值超出箱体范围或偏离中位数较远)。这些异常值可能由测量误差或数据录入错误导致,若不处理可能影响模型性能。基于 Z-Score(标准分数)方法剔除异常值,核心思想是通过计算每个数据点与均值的偏离程度(以标准差为单位),剔除偏离过大的点。

图片

图片

接下来进行数据的标准化操作,消除各变量之间量纲的影响,便于后续模型建立。由于输入变量(IN1至IN5)和输出变量(SO2、H2S)的量纲和数值范围可能存在差异(如箱线图中IN1的数值范围明显大于IN3),直接建模会导致模型对量纲较大的变量过度敏感。因此,采用Z-score标准化方法,将各特征转换为均值为0、标准差为1的分布。公式为:

通过相关系数热力图(图2)分析输入与输出变量间的相关性。结果显示输入变量中,IN1与IN3的相关系数较高(0.92),可能存在多重共线性,输出变量SO2与IN1、IN3、IN5的相关系数分别为0.62、0.57、0.43,呈现中度正相关,而H2S与IN5的相关系数为-0.15,相关性较弱。图5的输入与输出变量散点图可以看出其分布, 通过量化分析特征间的相关性,为后续模型构建中的特征筛选奠定基础。

图片

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值