无穷级数

1. 级数审敛法

1.1 级数收敛与发散

举个简单的例子:

s n = 1 + 1 2 + 1 2 2 + . . . . + 1 2 n − 1 s_n=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{n-1}} sn=1+21+221+....+2n11

可以简单的写成:

∑ n = 0 ∞ 1 2 n \sum_{n=0}^{\infty} \frac{1}{2^n} n=02n1

如果是否无限接近于某个数,则级数是收敛的,否则是发散的。

1.2 级数收敛的必要条件

直觉上来讲,数列的项越来越小才有收敛的可能。

u n > u n + 1 u_n > u_{n+1} un>un+1

lim ⁡ n − > ∞ u n = 0 \lim_{n->\infty} u_n=0 limn>un=0

充分必要条件是部分和收敛,对于任意n > N,有 ∑ n ∞ u n \sum _{n} ^{\infty} u_n nun收敛。

当然用这个充要条件证明级数收敛是比较麻烦的,一般都是求极限或者通过审敛法化成已知敛散性的级数。

我看到同济书上唯一使用这个充要条件证明级数收敛的就是p级数那个。

note

因此 ∑ i = 1 n a n \sum_{i=1}^{n}a_n i=1nan收敛 ,可以推出:

i) lim ⁡ n − > ∞ a n = 0 \lim_{n->\infty} a_n=0 n>liman=0
ii) lim ⁡ n − > ∞ S n \lim _{n->\infty} S_n n>limSn极限存在

那么反之:
lim ⁡ n − > ∞ a n ≠ 0 \lim_{n->\infty} a_n \ne 0 n>liman=0
则级数 a n {a_n} an发散。

1.3 审敛定理

比较审敛
  1. 对于任意n,数列 { u n } \{u_n\} {un}, { v n } \{v_n\} {vn}

i ) u n ≥ v n u_n \ge v_n unvn,如果 ∑ u n \sum u_n un收敛,则 ∑ v n \sum v_n vn收敛。
ii) u n ≥ v n u_n \ge v_n unvn,如果 ∑ v n \sum v_n vn发散,则 ∑ u n \sum u_n un发散。

这个比较好理解,因为每个项都比另一个数列都大的数列都收敛,那另一个肯定收敛。反之亦然。

比较审敛的进阶

有个定理:
∑ n = 0 ∞ k u n = k u \sum _{n=0} ^{\infty} ku_n=ku n=0kun=ku

其中 ∑ n = 0 ∞ u n = u \sum _{n=0} ^{\infty} u_n=u n=0un=u

就是如果一个数列收敛于 u u u,那么对每个数列的项乘一个常数,那么新的数列收敛于 k u ku ku

另外:
∑ n = 0 ∞ k u n + l v n = k u + l v \sum _{n=0} ^{\infty} ku_n+lv_n=ku+lv n=0kun+lvn=ku+lv

可以推广到任意的有限个数列的线性相加,其结果是每个数列的线性和。

∑ n = 0 ∞ a 1 u 1 n + a 2 u 2 n + . . . . a n u n n = a 1 u 1 + a 2 u 2 + . . . . . + a n u n \sum _{n=0} ^{\infty} a_1u_{1n}+ a_2u_{2n}+....a_nu_{nn}=a_1u_1+a_2u_2+.....+a_nu_n n=0a1u1n+a2u2n+....anunn=a1u1+a2u2+.....+anun

其中 u i u_i ui ∑ j = 0 n u i j \sum _{j=0} ^{n} u_{ij} j=0nuij的极限。

由于极限有这个性质:

对于任意n,数列 { u n } \{u_n\} {un}, { v n } \{v_n\} {vn}

i ) u n ≥ k v n u_n \ge kv_n unkvn,如果 ∑ u n \sum u_n un收敛,则 ∑ v n \sum v_n vn收敛。
ii) u n ≥ k v n u_n \ge kv_n unkvn,如果 ∑ v n \sum v_n vn发散,则 ∑ u n \sum u_n un发散。

跟上面那个差不多。

比较审敛的极限形式

这个极限形式是依据第n项的比值来决定的

lim ⁡ n → + ∞ u n v n = l \lim _{n \to+\infty} \frac {u_n}{v_n}=l n+limvnun=l

i) l l l为常数,两个数列敛散性相同。
ii) l = 0 l=0 l=0, { v n } \{v_n\} {vn}收敛,那因为 u n u_n un v n v_n vn高阶无穷小,则 { u n } \{u_n\} {un}收敛。
iii) l = + ∞ l=+\infty l=+, 那因为 u n u_n un v n v_n vn高阶无穷大, { v n } \{v_n\} {vn}发散,则 { u n } \{u_n\} {un}发散。

比值审敛

比较审敛的思想是找一个已知敛散性的级数做比较,达朗贝尔审敛的思想是第n+1项和第n项做比较。

lim ⁡ ∣ u n + 1 ∣ ∣ u n ∣ = ρ \lim \frac {|u_{n+1}|} {|u_n|} = \rho limunun+1=ρ

数列越来越小才是收敛的,因此 ρ < 1 \rho <1 ρ<1收敛, ρ > 1 \rho >1 ρ>1发散。

举个栗子

下面有几个我认为非常棒的证明。


  1. 求级数敛散性 ∑ n = 1 ∞ 2 n n ! n n \sum_{n=1}^{\infty} \frac{2^n n!}{n^n} n=1nn2nn!

分析:这种n次方不是用比值审敛法就是根值审敛法。我用根植审敛法做不出来。
lim ⁡ n → ∞ 2 n n ! n n n = 2 n n ! n ≤ 2 n n n n = 2 > 1 , ∴ 发 散 的 \lim_{n \to \infty} \sqrt[n]{\frac {2^n n!}{n^n}}=\frac{2}{n} \sqrt[n]{n!} \le \frac{2}{n} \sqrt[n]{n^n}=2 >1,\therefore 发散的 nlimnnn2nn! =n2nn! n2nnn =2>1
这波用力过猛放量放的有点大。

用比值审敛法:

lim ⁡ n → ∞ 2 n + 1 ( n + 1 ) ! ( n + 1 ) n + 1 n n 2 n n ! = lim ⁡ n → ∞ 2 ( n n + 1 ) n = lim ⁡ n → ∞ 2 ( 1 1 + 1 n ) n = 2 e < 1 \lim _{n \to \infty} \frac{2^{n+1} (n+1)!}{(n+1)^{n+1}} \frac{n^n} {2^n n!}=\lim _{n \to \infty}2(\frac{n}{n+1})^n =\lim _{n \to \infty}2(\frac{1}{1+\frac{1}{n}})^n=\frac{2}{e} <1 nlim(n+1)n+12n+1(n+1)!2nn!nn=nlim2(n+1n)n=nlim2(1+n11)n=e2<1

一般碰到 ( n n + 1 ) n (\frac{n}{n+1})^n (n+1n)n首先要想到用e去证明


∑ n = 1 ∞ ( n n + 1 ) n 2 \sum_{n=1}^{\infty} (\frac{n}{n+1})^{n^2} n=1(n+1n)n2
这里该使用根植审敛了

lim ⁡ n → ∞ a n n = lim ⁡ n → ∞ ( n n + 1 ) n = ( 1 1 + 1 n ) n = 1 e < 1 ∴ 收 敛 \lim _{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} (\frac{n}{n+1}) ^{n}= (\frac{1}{1+\frac{1}{n}})^n=\frac{1}{e } <1 \therefore 收敛 nlimnan =nlim(n+1n)n=(1+n11)n=e1<1

2. 幂级数

可以参考幂级数收敛半径及收敛区间

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值