1. 级数审敛法
1.1 级数收敛与发散
举个简单的例子:
s n = 1 + 1 2 + 1 2 2 + . . . . + 1 2 n − 1 s_n=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{n-1}} sn=1+21+221+....+2n−11
可以简单的写成:
∑ n = 0 ∞ 1 2 n \sum_{n=0}^{\infty} \frac{1}{2^n} n=0∑∞2n1
如果是否无限接近于某个数,则级数是收敛的,否则是发散的。
1.2 级数收敛的必要条件
直觉上来讲,数列的项越来越小才有收敛的可能。
u n > u n + 1 u_n > u_{n+1} un>un+1
即 lim n − > ∞ u n = 0 \lim_{n->\infty} u_n=0 limn−>∞un=0
充分必要条件是部分和收敛,对于任意n > N,有 ∑ n ∞ u n \sum _{n} ^{\infty} u_n ∑n∞un收敛。
当然用这个充要条件证明级数收敛是比较麻烦的,一般都是求极限或者通过审敛法化成已知敛散性的级数。
我看到同济书上唯一使用这个充要条件证明级数收敛的就是p级数那个。
note
因此 ∑ i = 1 n a n \sum_{i=1}^{n}a_n ∑i=1nan收敛 ,可以推出:
i)
lim
n
−
>
∞
a
n
=
0
\lim_{n->\infty} a_n=0
n−>∞liman=0
ii)
lim
n
−
>
∞
S
n
\lim _{n->\infty} S_n
n−>∞limSn极限存在
那么反之:
lim
n
−
>
∞
a
n
≠
0
\lim_{n->\infty} a_n \ne 0
n−>∞liman=0
则级数
a
n
{a_n}
an发散。
1.3 审敛定理
比较审敛
- 对于任意n,数列 { u n } \{u_n\} {un}, { v n } \{v_n\} {vn}
i )
u
n
≥
v
n
u_n \ge v_n
un≥vn,如果
∑
u
n
\sum u_n
∑un收敛,则
∑
v
n
\sum v_n
∑vn收敛。
ii)
u
n
≥
v
n
u_n \ge v_n
un≥vn,如果
∑
v
n
\sum v_n
∑vn发散,则
∑
u
n
\sum u_n
∑un发散。
这个比较好理解,因为每个项都比另一个数列都大的数列都收敛,那另一个肯定收敛。反之亦然。
比较审敛的进阶
有个定理:
∑
n
=
0
∞
k
u
n
=
k
u
\sum _{n=0} ^{\infty} ku_n=ku
n=0∑∞kun=ku
其中 ∑ n = 0 ∞ u n = u \sum _{n=0} ^{\infty} u_n=u n=0∑∞un=u
就是如果一个数列收敛于 u u u,那么对每个数列的项乘一个常数,那么新的数列收敛于 k u ku ku
另外:
∑
n
=
0
∞
k
u
n
+
l
v
n
=
k
u
+
l
v
\sum _{n=0} ^{\infty} ku_n+lv_n=ku+lv
n=0∑∞kun+lvn=ku+lv
可以推广到任意的有限个数列的线性相加,其结果是每个数列的线性和。
∑ n = 0 ∞ a 1 u 1 n + a 2 u 2 n + . . . . a n u n n = a 1 u 1 + a 2 u 2 + . . . . . + a n u n \sum _{n=0} ^{\infty} a_1u_{1n}+ a_2u_{2n}+....a_nu_{nn}=a_1u_1+a_2u_2+.....+a_nu_n n=0∑∞a1u1n+a2u2n+....anunn=a1u1+a2u2+.....+anun
其中 u i u_i ui是 ∑ j = 0 n u i j \sum _{j=0} ^{n} u_{ij} ∑j=0nuij的极限。
由于极限有这个性质:
对于任意n,数列 { u n } \{u_n\} {un}, { v n } \{v_n\} {vn}
i )
u
n
≥
k
v
n
u_n \ge kv_n
un≥kvn,如果
∑
u
n
\sum u_n
∑un收敛,则
∑
v
n
\sum v_n
∑vn收敛。
ii)
u
n
≥
k
v
n
u_n \ge kv_n
un≥kvn,如果
∑
v
n
\sum v_n
∑vn发散,则
∑
u
n
\sum u_n
∑un发散。
跟上面那个差不多。
比较审敛的极限形式
这个极限形式是依据第n项的比值来决定的
lim n → + ∞ u n v n = l \lim _{n \to+\infty} \frac {u_n}{v_n}=l n→+∞limvnun=l
i)
l
l
l为常数,两个数列敛散性相同。
ii)
l
=
0
l=0
l=0,
{
v
n
}
\{v_n\}
{vn}收敛,那因为
u
n
u_n
un是
v
n
v_n
vn高阶无穷小,则
{
u
n
}
\{u_n\}
{un}收敛。
iii)
l
=
+
∞
l=+\infty
l=+∞, 那因为
u
n
u_n
un是
v
n
v_n
vn高阶无穷大,
{
v
n
}
\{v_n\}
{vn}发散,则
{
u
n
}
\{u_n\}
{un}发散。
比值审敛
比较审敛的思想是找一个已知敛散性的级数做比较,达朗贝尔审敛的思想是第n+1项和第n项做比较。
lim ∣ u n + 1 ∣ ∣ u n ∣ = ρ \lim \frac {|u_{n+1}|} {|u_n|} = \rho lim∣un∣∣un+1∣=ρ
数列越来越小才是收敛的,因此 ρ < 1 \rho <1 ρ<1收敛, ρ > 1 \rho >1 ρ>1发散。
举个栗子
下面有几个我认为非常棒的证明。
- 求级数敛散性 ∑ n = 1 ∞ 2 n n ! n n \sum_{n=1}^{\infty} \frac{2^n n!}{n^n} n=1∑∞nn2nn!
分析:这种n次方不是用比值审敛法就是根值审敛法。我用根植审敛法做不出来。
lim
n
→
∞
2
n
n
!
n
n
n
=
2
n
n
!
n
≤
2
n
n
n
n
=
2
>
1
,
∴
发
散
的
\lim_{n \to \infty} \sqrt[n]{\frac {2^n n!}{n^n}}=\frac{2}{n} \sqrt[n]{n!} \le \frac{2}{n} \sqrt[n]{n^n}=2 >1,\therefore 发散的
n→∞limnnn2nn!=n2nn!≤n2nnn=2>1,∴发散的
这波用力过猛放量放的有点大。
用比值审敛法:
lim n → ∞ 2 n + 1 ( n + 1 ) ! ( n + 1 ) n + 1 n n 2 n n ! = lim n → ∞ 2 ( n n + 1 ) n = lim n → ∞ 2 ( 1 1 + 1 n ) n = 2 e < 1 \lim _{n \to \infty} \frac{2^{n+1} (n+1)!}{(n+1)^{n+1}} \frac{n^n} {2^n n!}=\lim _{n \to \infty}2(\frac{n}{n+1})^n =\lim _{n \to \infty}2(\frac{1}{1+\frac{1}{n}})^n=\frac{2}{e} <1 n→∞lim(n+1)n+12n+1(n+1)!2nn!nn=n→∞lim2(n+1n)n=n→∞lim2(1+n11)n=e2<1
一般碰到 ( n n + 1 ) n (\frac{n}{n+1})^n (n+1n)n首先要想到用e去证明
∑
n
=
1
∞
(
n
n
+
1
)
n
2
\sum_{n=1}^{\infty} (\frac{n}{n+1})^{n^2}
n=1∑∞(n+1n)n2
这里该使用根植审敛了
lim n → ∞ a n n = lim n → ∞ ( n n + 1 ) n = ( 1 1 + 1 n ) n = 1 e < 1 ∴ 收 敛 \lim _{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} (\frac{n}{n+1}) ^{n}= (\frac{1}{1+\frac{1}{n}})^n=\frac{1}{e } <1 \therefore 收敛 n→∞limnan=n→∞lim(n+1n)n=(1+n11)n=e1<1∴收敛
2. 幂级数
可以参考幂级数收敛半径及收敛区间