无穷级数(微积分)

第十章 无穷级数

10.1 数项级数

  • 柯西收敛定理(序列极限的充要条件): ∀ ϵ > 0 , ∃ N , s . t . ∣ a n − a m ∣ < ϵ , 只 要 n ≥ N , m ≥ N \forall \epsilon>0,\exist N,s.t.|a_n-a_m|<\epsilon,只要n\ge N,m\ge N ϵ>0,N,s.t.anam<ϵ,nN,mN.
    即一个序列有极限的充要条件是它是一个柯西序列。

  • 级数概念 ∑ n = 1 ∞ u n \sum\limits_{n=1}^\infty u_n n=1un为数列 { u n } \{u_n\} {un}的级数,其中一般项 u k u_k uk称作通项

  • 收敛定义 { s n } = ∑ k = 1 n a k \{s_n\}=\sum\limits_{k=1}^n a_k {sn}=k=1nak称为级数的部分和序列,若 lim ⁡ n → ∞ s n = S \lim\limits_{n\rightarrow\infty}s_n=S nlimsn=S有极限,则称级数收敛;若没有极限,则称级数发散

  • 级数性质

    • 1.可加减: ∑ n = 1 ∞ ( u n ± v n ) = ∑ n = 1 ∞ u n ± ∑ n = 1 ∞ v n \sum\limits_{n=1}^\infty (u_n\pm v_n)=\sum\limits_{n=1}^\infty u_n\pm \sum\limits_{n=1}^\infty v_n n=1(un±vn)=n=1un±n=1vn.
    • 2.可数乘: ∑ n = 1 ∞ k u n = k ∑ n = 1 ∞ u n \sum\limits_{n=1}^\infty ku_n=k\sum\limits_{n=1}^\infty u_n n=1kun=kn=1un.
    • 3.级数中改变有限项,不会改变级数的敛散性,但若收敛时会改变原级数和。
    • 4.加括号(收敛的结合律):收敛级数的项任意加括号后,新级数仍收敛 收 → 加 括 号 ↚ 收 \color{red}收\xrightarrow{加括号}\nleftarrow收 );加括号后级数发散,原级数也发散 发 ↛ ← 去 括 号 发 \color{red}发\nrightarrow\xleftarrow{去括号}发 )。

    例: ∑ n = 0 ∞ ( − 1 ) n 敛 散 性 \color{blue}\sum\limits_{n=0}^\infty (-1)^n敛散性 n=0(1)n
    解:
    部 分 和 有 s 2 n = 0 , s 2 n + 1 = 1 , 故 级 数 发 散 但 若 适 当 加 括 号 后 可 能 变 成 收 敛 的 , 此 时 加 括 号 错 误 部分和有s_{2n} = 0, s_{2n+1}=1,故级数发散 \\ 但若适当加括号后可能变成收敛的,此时加括号错误 s2n=0,s2n+1=1,

    • 5.级数收敛(必要条件): lim ⁡ n → ∞ s n = S \lim\limits_{n\rightarrow\infty}s_n=S nlimsn=S ⟹ \Longrightarrow lim ⁡ n → ∞ u n = 0 \color{red}\lim\limits_{n\rightarrow\infty}u_n=0 nlimun=0.
      逆否命题成立:若 lim ⁡ n → ∞ u n ≠ 0 \lim\limits_{n\rightarrow\infty}u_n\ne0 nlimun=0,则级数发散。
    • 6.级数收敛(充要条件): lim ⁡ n → ∞ s n = S \lim\limits_{n\rightarrow\infty}s_n=S nlimsn=S    ⟺    \iff ∀ ϵ > 0 , ∃ N , s . t . ∣ ∑ k = n + 1 n + p u k ∣ < ϵ , 只 要 n ≥ N , p ≥ 1 \forall\epsilon>0,\exist N,s.t.|\sum\limits_{k=n+1}^{n+p} u_k|<\epsilon,只要n\ge N,p\ge1 ϵ>0,N,s.t.k=n+1n+puk<ϵ,nN,p1.
      即级数中任取一段,无论 p p p多大,只要 n n n充分大,这段和的绝对值就足够

    例: 调 和 级 数 ∑ n = 0 ∞ 1 n 敛 散 性 \color{blue}调和级数\sum\limits_{n=0}^\infty \dfrac{1}{n}敛散性 n=0n1
    解法1:
    由 级 数 收 敛 充 要 条 件 : ∑ k = n + 1 2 n 1 k = 1 n + 1 + . . . + 1 2 n ≥ n 2 n = 1 2 ≠ 0. 故 调 和 级 数 发 散 。 由级数收敛充要条件:\sum\limits_{k=n+1}^{2n}\dfrac{1}{k}=\dfrac{1}{n+1}+...+\dfrac{1}{2n}\ge\dfrac{n}{2n} = \dfrac{1}{2}\ne0. \\ 故调和级数发散。 k=n+12nk1=n+11+...+2n12nn=21=0.
    解法2:
    ∵ x > ln ⁡ ( x + 1 ) ∴ 1 n > ln ⁡ ( 1 n + 1 ) = ln ⁡ ( n + 1 ) − ln ⁡ ( n ) 故 ∑ n = 0 ∞ 1 n = lim ⁡ n → ∞ ∑ k = 0 n 1 k > lim ⁡ n → ∞ ln ⁡ ( n + 1 ) = ∞ . 故 调 和 级 数 发 散 。 \because x>\ln(x+1)\therefore \color{fuchsia}\dfrac{1}{n}>\ln(\dfrac{1}{n}+1)=\ln(n+1)-\ln(n) \\ 故\sum\limits_{n=0}^\infty \dfrac{1}{n}=\lim\limits_{n\rightarrow\infty}\sum\limits_{k=0}^n \dfrac{1}{k} >\lim\limits_{n\rightarrow\infty}\ln(n+1)=\infty.故调和级数发散。 x>ln(x+1)n1>ln(n1+1)=ln(n+1)ln(n)n=0n1=nlimk=0nk1>nlimln(n+1)=.

10.2 数项级数敛散性

  • 正项级数 u n ≥ 0 u_n\ge0 un0

    • 定理:正项级数 ∑ n = 1 ∞ u n \sum\limits_{n=1}^\infty u_n n=1un收敛    ⟺    \iff 部分和 { S n } \{S_n\} {Sn}有界(因 { S n } \{S_n\} {Sn}单增,有上界时必有极限)
    • 比较审敛法:正项级数有 u i ≤ v i u_i\le v_i uivi,若 ∑ n = 1 ∞ u n \sum\limits_{n=1}^\infty u_n n=1un发散,则 ∑ n = 1 ∞ v n \sum\limits_{n=1}^\infty v_n n=1vn发散;若 ∑ n = 1 ∞ v n \sum\limits_{n=1}^\infty v_n n=1vn收敛,则 ∑ n = 1 ∞ u n \sum\limits_{n=1}^\infty u_n n=1un收敛。(由已知推未知)

    例: p − 级 数 ∑ n = 1 ∞ 1 n p 敛 散 性 . 证 明 : 0 < p ≤ 1 时 发 散 , p > 1 时 收 敛 \color{blue}p-级数\sum\limits_{n=1}^\infty \dfrac{1}{n^p}敛散性.证明:0<p\le1时发散,p>1时收敛 pn=1np1.0<p1p>1
    当 0 < p ≤ 1 时 , 1 n p ≥ 1 n , 由 比 较 审 敛 法 得 ∑ n = 1 ∞ 1 n p 发 散 . 当 1 < p 时 , 对 函 数 y = 1 n p , S n = ∑ n = 1 ∞ 1 n p < 1 + ∫ 1 n 1 x p d x < 1 + 1 p − 1 有 界 , 故 ∑ n = 1 ∞ 1 n p 收 敛 . 当0<p\le1时,\dfrac{1}{n^p}\ge\dfrac{1}{n},由比较审敛法得\sum\limits_{n=1}^\infty \dfrac{1}{n^p}发散.\\ 当1<p时,对函数y=\dfrac{1}{n^p},S_n={\color{fuchsia}\sum\limits_{n=1}^\infty \dfrac{1}{n^p} < 1+\int_1^n\dfrac{1}{x^p}dx} < 1+\dfrac{1}{p-1}有界,故\sum\limits_{n=1}^\infty \dfrac{1}{n^p}收敛. 0<p1,np1n1,n=1np1.1<p,y=np1,Sn=n=1np1<1+1nxp1dx<1+p11n=1np1.

    • 比较审敛法的极限形式:对正项级数 { u n } , { v n } \{u_n\},\{v_n\} {un},{vn},记 h = lim ⁡ n → ∞ u n v n \color{red}h = \lim\limits_{n\rightarrow\infty}\dfrac{u_n}{v_n} h=nlimvnun
      • (1).若 0 < h < + ∞ 0<h<+\infty 0<h<+ ∑ n = 1 ∞ u n \sum\limits_{n=1}^\infty u_n n=1un ∑ n = 1 ∞ v n \sum\limits_{n=1}^\infty v_n n=1vn同敛散性
      • (2).若 h = 0 h=0 h=0,若 ∑ n = 1 ∞ v n \sum\limits_{n=1}^\infty v_n n=1vn收敛,则 ∑ n = 1 ∞ u n \sum\limits_{n=1}^\infty u_n n=1un收敛
      • (3).若 h = + ∞ h=+\infty h=+,若 ∑ n = 1 ∞ u n \sum\limits_{n=1}^\infty u_n n=1un发散,则 ∑ n = 1 ∞ v n \sum\limits_{n=1}^\infty v_n n=1vn发散
    • 极限审敛法(相当于比较审敛法的极限形式的推论):对正项级数 { u n } \{u_n\} {un}
      • (1).若 lim ⁡ n → ∞ n p u n = l ≥ 0 ( p > 1 ) \lim\limits_{n\rightarrow\infty}n^pu_n=l\ge 0(p>1) nlimnpun=l0(p>1),则 ∑ n = 1 ∞ u n \sum\limits_{n=1}^\infty u_n n=1un收敛
      • (2).若 lim ⁡ n → ∞ n u n = l > 0 \lim\limits_{n\rightarrow\infty}nu_n=l> 0 nlimnun=l>0 lim ⁡ n → ∞ n u n = + ∞ \lim\limits_{n\rightarrow\infty}nu_n=+\infty nlimnun=+,则 ∑ n = 1 ∞ u n \sum\limits_{n=1}^\infty u_n n=1un发散

    例: ∑ n = 1 ∞ l n ( 1 + 1 n 2 ) 敛 散 性 \color{blue}\sum\limits_{n=1}^\infty ln(1+\dfrac{1}{n^2})敛散性 n=1ln(1+n21)
    解:
    ∵ lim ⁡ n → ∞ n 2 ln ⁡ ( 1 + 1 n 2 ) = 1 > 0 ( p = 2 > 1 ) , ∴ 原 级 数 收 敛 . \because \lim\limits_{n\rightarrow\infty}n^2\ln(1+\dfrac{1}{n^2})=1>0(p=2>1), \\ \therefore原级数收敛. nlimn2ln(1+n21)=1>0(p=2>1),.

  • 交错项级数 ∑ n = 1 ∞ ( − 1 ) n − 1 u n \sum\limits_{n=1}^\infty (-1)^{n-1}u_n n=1(1)n1un ∑ n = 1 ∞ ( − 1 ) n u n \sum\limits_{n=1}^\infty (-1)^nu_n n=1(1)nun,其中 u n > 0 u_n>0 un>0.

    • 莱布尼兹审敛法:交错级数收敛    ⟺    \iff ( 1 ) u n ≥ u n + 1 ( n = 1 , 2 , . . . ) ( 2 ) lim ⁡ n → ∞ u n = 0. (1)u_n\ge u_{n+1}(n=1,2,...)\qquad(2)\lim\limits_{n\rightarrow\infty}u_n=0. (1)unun+1(n=1,2,...)(2)nlimun=0.
      余项 ∣ r n ∣ = ∣ ( lim ⁡ n → ∞ S n ) − S n ∣ = ∣ u n + 1 − u n + 2 + . . . ∣ ≤ u n + 1 |r_n|=|(\lim\limits_{n\rightarrow\infty}S_n)-S_n|=|u_{n+1}-u_{n+2}+... |\le u_{n+1} rn=(nlimSn)Sn=un+1un+2+...un+1.
  • 任意项级数

    • 绝对收敛 V S VS VS条件收敛
      • 绝对收敛 ∑ n = 1 ∞ ∣ u n ∣ \sum\limits_{n=1}^\infty |u_n| n=1un收敛,此时 ∑ n = 1 ∞ u n \sum\limits_{n=1}^\infty u_n n=1un一定收敛 (故可通过加绝对值判断敛散性)
      • 条件收敛 ∑ n = 1 ∞ ∣ u n ∣ \sum\limits_{n=1}^\infty |u_n| n=1un发散,而 ∑ n = 1 ∞ u n \sum\limits_{n=1}^\infty u_n n=1un收敛
    • 比值(达朗贝尔)审敛法:对级数 { u n } \{u_n\} {un} ,记 ρ = lim ⁡ n → ∞ ∣ u n + 1 u n ∣ \color{red}\rho = \lim\limits_{n\rightarrow\infty}\left|\dfrac{u_{n+1}}{u_n}\right| ρ=nlimunun+1
      • (1).若 ρ < 1 \rho<1 ρ<1,则 ∑ n = 1 ∞ u n \sum\limits_{n=1}^\infty u_n n=1un绝对收敛(从而收敛)
      • (2).若 ρ > 1 \rho>1 ρ>1 ρ = + ∞ \rho=+\infty ρ=+,则 ∑ n = 1 ∞ u n \sum\limits_{n=1}^\infty u_n n=1un发散
      • (3).若 ρ = 1 \rho=1 ρ=1,不能确定
    • 根值(柯西)审敛法:对级数 { u n } \{u_n\} {un} ,记 ρ = lim ⁡ n → ∞ ∣ u n ∣ n \color{red}\rho = \lim\limits_{n\rightarrow\infty}\sqrt[n]{|u_n|} ρ=nlimnun
      • (1).若 ρ < 1 \rho<1 ρ<1,则 ∑ n = 1 ∞ u n \sum\limits_{n=1}^\infty u_n n=1un绝对收敛(从而收敛)
      • (2).若 ρ > 1 \rho>1 ρ>1 ρ = + ∞ \rho=+\infty ρ=+,则 ∑ n = 1 ∞ u n \sum\limits_{n=1}^\infty u_n n=1un发散
      • (3).若 ρ = 1 \rho=1 ρ=1,不能确定

    例: ∑ n = 1 ∞ ln ⁡ ( n + 2 ) ( a + 1 n ) n   ( a > 0 ) 敛 散 性 \color{blue}\sum\limits_{n=1}^\infty \dfrac{\ln(n+2)}{(a+\dfrac{1}{n})^n}\,(a>0)敛散性 n=1(a+n1)nln(n+2)(a>0)
    先 转 为 函 数 x 求 极 限 : lim ⁡ x → ∞ ln ⁡ ( x + 2 ) 1 x = lim ⁡ x → ∞ e ln ⁡ ln ⁡ ( x + 2 ) x = lim ⁡ x → ∞ e 1 ( x + 2 ) ln ⁡ ( x + 2 ) 1 = 1. lim ⁡ n → ∞ ∣ u n ∣ n = lim ⁡ n → ∞ ln ⁡ ( n + 2 ) 1 n a + n = 1 a . 故 a > 1 时 , 原 级 数 收 敛 . a < 1 , 原 级 数 发 散 . a = 1 时 , lim ⁡ n → ∞ ∣ u n + 1 u n ∣ = lim ⁡ n → ∞ ln ⁡ ( n + 3 ) ln ⁡ ( n + 2 ) > 1 , 原 级 数 发 散 . 先转为函数x求极限:\lim\limits_{x\rightarrow\infty}\ln(x+2)^{\dfrac{1}{x}} = \lim\limits_{x\rightarrow\infty}e^{\ln\ln(x+2)\over x} = \lim\limits_{x\rightarrow\infty}e^{{1\over(x+2)\ln(x+2)}\over 1} = 1.\\ \lim\limits_{n\rightarrow\infty}\sqrt[n]{|u_n|} = \lim\limits_{n\rightarrow\infty}\dfrac{\ln(n+2)^{1\over n}}{a+n} = \dfrac{1}{a}. \\ 故a>1时,原级数收敛.a<1,原级数发散. \\ a=1时,\lim\limits_{n\rightarrow\infty}\left|\dfrac{u_{n+1}}{u_n}\right| = \lim\limits_{n\rightarrow\infty}\dfrac{\ln(n+3)}{\ln(n+2)} > 1,原级数发散. xxlimln(x+2)x1=xlimexlnln(x+2)=xlime1(x+2)ln(x+2)1=1.nlimnun =nlima+nln(n+2)n1=a1.a>1.a<1.a=1nlimunun+1=nlimln(n+2)ln(n+3)>1.
    例: 设 a n > 0 且 ∑ n = 1 ∞ a n 收 敛 , λ ∈ ( 0 , π 2 ) , 证 明 级 数 ∑ n = 1 ∞ ( − 1 ) n ( n tan ⁡ λ n ) a 2 n 绝 对 收 敛 \color{blue}设a_n>0且\sum\limits_{n=1}^\infty a_n收敛,\lambda\in(0, \dfrac{\pi}{2}),证明级数\sum\limits_{n=1}^\infty (-1)^n(n\tan\dfrac{\lambda}{n})a_{2n}绝对收敛 an>0n=1anλ(0,2π),n=1(1)n(ntannλ)a2n.
    解:
    ∵ ∑ n = 1 ∞ a n 收 敛    ∴ ∑ n = 1 ∞ a 2 n 收 敛 . ∵ lim ⁡ n → ∞ n tan ⁡ λ n = lim ⁡ n → ∞ n ⋅ λ n = λ    ∴ lim ⁡ n → ∞ ∣ ( − 1 ) n ( n tan ⁡ λ n ) a 2 n ∣ = λ a 2 n 即 ∑ n = 1 ∞ ∣ ( − 1 ) n ( n tan ⁡ λ n ) a 2 n ∣ 与 级 数 ∑ n = 1 ∞ a 2 n 同 敛 散 性 , 故 原 级 数 绝 对 收 敛 . \because \sum\limits_{n=1}^\infty a_n收敛\;\therefore\sum\limits_{n=1}^\infty a_{2n}收敛.\\ \because \lim\limits_{n\rightarrow\infty} n\tan\dfrac{\lambda}{n}=\lim\limits_{n\rightarrow\infty} n\cdot\dfrac{\lambda}{n} = \lambda\;\therefore \lim\limits_{n\rightarrow\infty} |(-1)^n(n\tan\dfrac{\lambda}{n})a_{2n}|=\lambda a_{2n}\\ 即\sum\limits_{n=1}^\infty |(-1)^n(n\tan\dfrac{\lambda}{n})a_{2n}|与级数\sum\limits_{n=1}^\infty a_{2n}同敛散性,故原级数绝对收敛. n=1ann=1a2n.nlimntannλ=nlimnnλ=λnlim(1)n(ntannλ)a2n=λa2nn=1(1)n(ntannλ)a2nn=1a2n.
    例: 判 定 级 数 ∑ n = 1 ∞ sin ⁡ ( n 2 + λ n + μ n π ) 的 敛 散 性 \color{blue}判定级数\sum\limits_{n=1}^\infty \sin(\dfrac{n^2+\lambda n+\mu}{n}\pi)的敛散性 n=1sin(nn2+λn+μπ)
    解:
    sin ⁡ ( n 2 + λ n + μ n π ) = sin ⁡ ( ( n + λ + μ n ) π ) = ( − 1 ) n sin ⁡ ( λ + μ n ) π . 当 λ ∈ Z 时 , 原 级 数 = ∑ n = 1 ∞ ( − 1 ) n + λ sin ⁡ μ n π 令 f ( x ) = sin ⁡ μ x π ∵ f ( x ) 单 调 递 减    ∴ sin ⁡ μ n π > sin ⁡ μ n + 1 π , lim ⁡ n → ∞ sin ⁡ μ n π = 0. 故 原 级 数 为 交 错 级 数 收 敛 . 当 λ ∉ Z 时 , lim ⁡ n → ∞ sin ⁡ ( λ + μ n ) π = lim ⁡ n → ∞ sin ⁡ λ π ≠ 0. 故 原 级 数 发 散 . \sin(\dfrac{n^2+\lambda n+\mu}{n}\pi)=\sin((n+\lambda+\dfrac{\mu}{n})\pi)=(-1)^n\sin(\lambda+\dfrac{\mu}{n})\pi.\\ 当\lambda\in Z时,原级数=\sum\limits_{n=1}^\infty (-1)^{n+\lambda}\sin\dfrac{\mu}{n}\pi\\令f(x)=\sin\dfrac{\mu}{x}\pi\because f(x)单调递减\;\therefore \sin\dfrac{\mu}{n}\pi>\sin\dfrac{\mu}{n+1}\pi,\lim\limits_{n\rightarrow\infty} \sin\dfrac{\mu}{n}\pi=0.\qquad故原级数为交错级数收敛.\\ 当\lambda\notin Z时,\lim\limits_{n\rightarrow\infty} \sin(\lambda+\dfrac{\mu}{n})\pi=\lim\limits_{n\rightarrow\infty} \sin\lambda\pi\ne0.\qquad故原级数发散. sin(nn2+λn+μπ)=sin((n+λ+nμ)π)=(1)nsin(λ+nμ)π.λZ,=n=1(1)n+λsinnμπf(x)=sinxμπf(x)sinnμπ>sinn+1μπ,nlimsinnμπ=0..λ/Z,nlimsin(λ+nμ)π=nlimsinλπ=0..
    例: 设 f ( x ) 在 x = 0 的 某 领 域 内 具 有 二 阶 连 续 偏 导 数 , 且 ∣ f ′ ′ ( x ) ≤ M ∣ , lim ⁡ x → 0 f ( x ) x = 0 , 证 明 级 数 ∑ n = 1 ∞ f ( 1 n ) 绝 对 收 敛 \color{blue}设f(x)在x=0的某领域内具有二阶连续偏导数,且|f''(x)\le M|,\lim\limits_{x\rightarrow0} \dfrac{f(x)}{x}=0,证明级数\sum\limits_{n=1}^\infty f(\dfrac{1}{n})绝对收敛 f(x)x=0,f(x)M,x0limxf(x)=0,n=1f(n1)
    解:
    ∵ lim ⁡ x → 0 f ( x ) x = 0    ∴ f ( 0 ) = 0 , f ′ ( 0 ) = 0. 由 泰 勒 公 式 , ∃ ξ ∈ ( 0 , 1 n ) s . t .    f ( 1 n ) = f ( 0 ) + f ′ ( 0 ) 1 n + f ′ ′ ( ξ ) 2 ! ( 1 n ) 2 = f ′ ′ ( ξ ) 2 ! ( 1 n ) 2 , 则 ∣ f ( 1 n ) ∣ = ∣ f ′ ′ ( ξ ) ∣ 2 ! ( 1 n ) 2 ≤ M 2 n 2 . ∵ ∑ n = 1 ∞ 1 n 2 收 敛    ∴ 原 级 数 绝 对 收 敛 . \because \lim\limits_{x\rightarrow0} \dfrac{f(x)}{x}=0\;\therefore f(0)=0,f'(0)=0.\\ 由泰勒公式,\exist\xi\in(0, \dfrac{1}{n}) \\s.t.\;f(\dfrac{1}{n})=f(0)+f'(0)\dfrac{1}{n}+\dfrac{f''(\xi)}{2!}(\dfrac{1}{n})^2=\dfrac{f''(\xi)}{2!}(\dfrac{1}{n})^2,则|f(\dfrac{1}{n})|=\dfrac{|f''(\xi)|}{2!}(\dfrac{1}{n})^2\le\dfrac{M}{2n^2}.\\ \because \sum\limits_{n=1}^\infty \dfrac{1}{n^2}收敛\;\therefore 原级数绝对收敛. x0limxf(x)=0f(0)=0,f(0)=0.,ξ(0,n1)s.t.f(n1)=f(0)+f(0)n1+2!f(ξ)(n1)2=2!f(ξ)(n1)2,f(n1)=2!f(ξ)(n1)22n2M.n=1n21.

10.3 函数项级数

  • 1.函数项级数收敛域与和函数

    • 概念: ∑ n = 1 ∞ u n ( x ) = s ( x ) = lim ⁡ n → ∞ s n ( x )    ( x ∈ D ) \color{red}\sum\limits_{n=1}^\infty u_n(x) = s(x) = \lim\limits_{n\rightarrow\infty}s_n(x)\;(x\in D) n=1un(x)=s(x)=nlimsn(x)(xD)
      其中 ∑ n = 1 ∞ u n ( x ) \sum\limits_{n=1}^\infty u_n(x) n=1un(x)为级数, s n ( x ) s_n(x) sn(x)为部分和函数, s ( x ) s(x) s(x)为级数的和函数 D D D为收敛域(和函数定义在收敛域上)

    • 余项: r n ( x ) = s ( x ) − s n ( x ) = ∑ k = n + 1 ∞ u k ( x ) \color{red}r_n(x) = s(x) - s_n(x) = \sum\limits_{k=n+1}^\infty u_k(x) rn(x)=s(x)sn(x)=k=n+1uk(x),且 lim ⁡ n → ∞ r n ( x ) = 0 \lim\limits_{n\rightarrow\infty}r_n(x)=0 nlimrn(x)=0.

      例: 几 何 级 数 ∑ n = 0 ∞ x n \color{blue}几何级数\sum\limits_{n=0}^\infty x^n n=0xn. 定义域: ( − ∞ , + ∞ ) (-\infty, +\infty) (,+),收敛域: ( − 1 , 1 ) (-1,1) (1,1),和函数为 1 1 − x \dfrac{1}{1-x} 1x1.

  • 2.幂级数敛散性

    • 一般形式: ∑ n = 0 ∞ a n ( x − x 0 ) n = a 0 + a 1 ( x − x 0 ) + . . . \sum\limits_{n=0}^\infty a_n(x-x_0)^n=a_0+a_1(x-x_0)+... n=0an(xx0)n=a0+a1(xx0)+...
    • 阿贝尔定理:对于幂级数 ∑ n = 0 ∞ a n x n \sum\limits_{n=0}^\infty a_nx^n n=0anxn,若在 x 0 x_0 x0处收敛,则 ∣ x ∣ < ∣ x 0 ∣ |x|<|x_0| x<x0时,幂级数绝对收敛;在 x 0 x_0 x0处发散,则 ∣ x ∣ > ∣ x 0 ∣ |x|>|x_0| x>x0时,幂级数发散
    • 结论:对于幂级数 ∑ n = 0 ∞ a n x n \sum\limits_{n=0}^\infty a_nx^n n=0anxn,存在收敛半径正数 R R R ( − R , R ) (-R,R) (R,R)称为幂级数的收敛区间,当 R ≠ 0 R\ne0 R=0 R ≠ + ∞ R\ne+\infty R=+时:
      • (1).当 ∣ x ∣ < R |x|<R x<R时,幂级数绝对收敛
      • (2).当 ∣ x ∣ > R |x|>R x>R时,幂级数发散
      • (3).当 x = R x=R x=R x = − R x=-R x=R时,不能确定
    • 定理:对幂级数 ∑ n = 0 ∞ a n x n \sum\limits_{n=0}^\infty a_nx^n n=0anxn,记 ρ = lim ⁡ n → ∞ ∣ a n + 1 a n ∣ \color{red}\rho = \lim\limits_{n\rightarrow\infty}\left|\dfrac{a_{n+1}}{a_n}\right| ρ=nlimanan+1
      • (1).当 0 < ρ < + ∞ 0<\rho<+\infty 0<ρ<+时, R = 1 ρ R=\dfrac{1}{\rho} R=ρ1
      • (2).当 ρ = + ∞ \rho=+\infty ρ=+时, R = 0 R=0 R=0
      • (3).当 ρ = 0 \rho=0 ρ=0时, R = + ∞ R=+\infty R=+.

    例: ∑ n = 1 ∞ ( − 1 ) n 2 n n ( x − 1 2 ) n 求 收 敛 域 \color{blue}\sum\limits_{n=1}^\infty (-1)^n\dfrac{2^n}{\sqrt{n}}(x-{1\over2})^n 求收敛域 n=1(1)nn 2n(x21)n
    令 t = x − 1 2 , 则 lim ⁡ n → ∞ ∣ u n + 1 u n ∣ = lim ⁡ n → ∞ 2 n n + 1 ∣ t ∣ = 2 ∣ t ∣ . 若 0 < x < 1 , 收 敛 . 若 x < 0 或 1 < x , 发 散 . 当 x = 1 时 , 原 式 = ∑ n = 1 ∞ ( − 1 ) n n 收 敛 . 当 x = 0 时 , 原 式 = ∑ n = 1 ∞ 1 n 发 散 . ∴ 收 敛 域 为 ( 0 , 1 ] 令t=x-{1\over2},则\lim\limits_{n\rightarrow\infty}\left|\dfrac{u_{n+1}}{u_n}\right| = \lim\limits_{n\rightarrow\infty} 2\sqrt{\dfrac{n}{n+1}}|t|=2|t|. \\ 若0<x<1,收敛.若x<0或1<x,发散. \\ 当x=1时,原式=\sum\limits_{n=1}^\infty \dfrac{(-1)^n}{\sqrt{n}}收敛.当x=0时,原式=\sum\limits_{n=1}^\infty \dfrac{1}{\sqrt{n}}发散. \\ \therefore收敛域为\left( 0,1 \right] t=x21,nlimunun+1=nlim2n+1n t=2t.0<x<1,.x<01<x,.x=1,=n=1n (1)n.x=0,=n=1n 1.(0,1]

  • 3.幂级数的性质

    • 加减: ∑ n = 0 ∞ a n x n ± ∑ n = 0 ∞ b n x n = ∑ n = 0 ∞ ( a n ± b n ) x n = s a ( x ) + s b ( x ) \sum\limits_{n=0}^\infty a_nx^n\pm\sum\limits_{n=0}^\infty b_nx^n = \sum\limits_{n=0}^\infty (a_n\pm b_n)x^n = s_a(x)+s_b(x) n=0anxn±n=0bnxn=n=0(an±bn)xn=sa(x)+sb(x), 收敛半径 R = min ⁡ ( R a , R b ) R=\min(R_a,R_b) R=min(Ra,Rb)

    • 乘积(柯西乘积): ( ∑ n = 0 ∞ a n x n ) ⋅ ( ∑ n = 0 ∞ b n x n ) = ∑ n = 0 ∞ c n x n = s a ( x ) ⋅ s b ( x ) (\sum\limits_{n=0}^\infty a_nx^n)\cdot(\sum\limits_{n=0}^\infty b_nx^n) = \sum\limits_{n=0}^\infty c_nx^n = s_a(x)\cdot s_b(x) (n=0anxn)(n=0bnxn)=n=0cnxn=sa(x)sb(x),收敛半径 R = min ⁡ ( R a , R b ) R=\min(R_a,R_b) R=min(Ra,Rb)
      其中 c n = ∑ k = 0 n a k b n − k c_n=\sum\limits_{k=0}^n a_kb_{n-k} cn=k=0nakbnk.

    • 商(柯西乘积的逆运算)

  • 一致收敛性(收敛区间幂级数的性质):

    • 性质一(连续性):和函数 s ( x ) s(x) s(x) ( − R , R ) (-R,R) (R,R)内处处连续。即 ∀ x 0 ∈ ( − R , R ) \forall x_0\in(-R,R) x0(R,R)时, lim ⁡ x → x 0 s ( x ) = s ( x 0 ) \lim\limits_{x\rightarrow x_0}s(x)=s(x_0) xx0lims(x)=s(x0)
      或:(极限与无穷项求和可交换
      lim ⁡ x → x 0 ∑ n = 0 ∞ a n x n = ∑ n = 0 ∞ a n x 0 n = ∑ n = 0 ∞ lim ⁡ x → x 0 a n x n \lim\limits_{x\rightarrow x_0}\sum\limits_{n=0}^\infty a_nx^n = \sum\limits_{n=0}^\infty a_nx_0^n = \sum\limits_{n=0}^\infty\lim\limits_{x\rightarrow x_0} a_nx^n xx0limn=0anxn=n=0anx0n=n=0xx0limanxn
    • 性质二(逐项可导):收敛域仍为 ( − R , R ) (-R,R) (R,R)极限与求导可交换
      s ′ ( x ) = ( ∑ n = 0 ∞ a n x n ) ′ = ∑ n = 0 ∞ ( a n x n ) ′ = ∑ n = 1 ∞ a n n x n − 1 s'(x)=\left(\sum\limits_{n=0}^\infty a_nx^n\right)'=\sum\limits_{n=0}^\infty (a_nx^n)'=\sum\limits_{\color{red}n=1}^\infty a_nnx^{n-1} s(x)=(n=0anxn)=n=0(anxn)=n=1annxn1
      推论: s ( n ) ( x ) = ( ∑ n = 0 ∞ a n x n ) ( n ) = ∑ n = k ∞ ( a n x n ) ( n ) s^{(n)}(x)=\left(\sum\limits_{n=0}^\infty a_nx^n\right)^{(n)}=\sum\limits_{\color{red}n=k}^\infty (a_nx^n)^{(n)} s(n)(x)=(n=0anxn)(n)=n=k(anxn)(n) x ∈ ( − R , R ) x\in(-R,R) x(R,R).
    • 性质三(逐项可积):收敛域仍为 ( − R , R ) (-R,R) (R,R)极限与求导可交换
      ∫ 0 x s ( x ) d x = ∫ 0 x ∑ n = 0 ∞ a n x n   d x = ∑ n = 0 ∞ ∫ 0 x a n x n   d x = ∑ n = 0 ∞ a n x n + 1 n + 1 \int_0^x s(x)dx=\int_0^x\sum\limits_{n=0}^\infty a_nx^n\,dx=\sum\limits_{n=0}^\infty \int_0^xa_nx^n\,dx=\sum\limits_{n=0}^\infty a_n\dfrac{x^{n+1}}{n+1} 0xs(x)dx=0xn=0anxndx=n=00xanxndx=n=0ann+1xn+1
      推论:幂级数在收敛区间上任意可积等于逐项积分且收敛区间不变。

例: 求 ∑ n = 0 ∞ ( − 1 ) n ( n 2 − n + 1 ) 2 之 和 \color{blue}求\sum\limits_{n=0}^\infty (-1)^n\dfrac{(n^2-n+1)}{2}之和 n=0(1)n2(n2n+1).

解:
原 式 = ∑ n = 0 ∞ ( n 2 − n ) ( − 1 2 ) n + ∑ n = 0 ∞ ( − 1 2 ) n = s 1 + s 2 ,    其 中 s 2 = 2 3 . ∵ ∑ n = 0 ∞ ( n 2 − n ) x n = x 2 ( ∑ n = 2 ∞ x n ) ′ ′ = x 2 ( x 2 1 − x ) ′ ′ = 2 x 2 ( 1 − x ) 3 . ∴ s 1 = 4 27 故 原 式 为 = 22 27 . 原式=\sum\limits_{n=0}^\infty (n^2-n)(-\dfrac{1}{2})^n+\sum\limits_{n=0}^\infty (-\dfrac{1}{2})^n=s_1+s_2,\;其中s_2=\dfrac{2}{3}.\\ \because \sum\limits_{n=0}^\infty (n^2-n)x^n=x^2\left(\sum\limits_{n=2}^\infty x^n \right)''=x^2\left(\dfrac{x^2}{1-x} \right)''=\dfrac{2x^2}{(1-x)^3}.\\ \therefore s_1=\dfrac{4}{27}\\ 故原式为=\dfrac{22}{27}. =n=0(n2n)(21)n+n=0(21)n=s1+s2,s2=32.n=0(n2n)xn=x2(n=2xn)=x2(1xx2)=(1x)32x2.s1=274=2722.

  • 4.泰勒级数

    • 概念

      • 1. f ( x ) f(x) f(x)幂级数展开式 f ( x ) = ∑ n = 0 ∞ a n x n \color{red}f(x)=\sum\limits_{n=0}^\infty a_nx^n f(x)=n=0anxn
      • 2. f ( x ) f(x) f(x) x 0 x_0 x0处的泰勒级数 ∑ n = 0 ∞ f ( n ) ( x 0 ) n ! ( x − x 0 ) n \color{red}\sum\limits_{n=0}^\infty \dfrac{f^{(n)}(x_0)}{n!}(x-x_0)^n n=0n!f(n)(x0)(xx0)n(泰勒展式需要 n n n阶导数,泰勒级数需要无穷阶导数)
    • 定理1(充要条件) f ( x ) f(x) f(x)能展开成泰勒级数    ⟺    \iff x 0 x_0 x0的某邻域处, f ( x ) f(x) f(x)具有各阶导数,即泰勒级数能在 x 0 x_0 x0点收敛于 f ( x ) f(x) f(x)
      f ( x ) = ∑ n = 0 ∞ f ( n ) ( x 0 ) n ! ( x − x 0 ) n    ⟺    lim ⁡ n → ∞ R n ( x ) = lim ⁡ n → ∞ f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − x 0 ) n + 1 = 0    ( x ∈ U ( x 0 ) ) f(x)=\sum\limits_{n=0}^\infty \dfrac{f^{(n)}(x_0)}{n!}(x-x_0)^n{\color{fuchsia}\iff}{\color{purple}\lim\limits_{n\rightarrow\infty}R_n(x)}=\lim\limits_{n\rightarrow\infty}\dfrac{f^{\color{red}(n+1)}(\xi)}{{\color{red}(n+1)}!}(x-x_0)^{\color{red}n+1}{\color{purple}=0}\;(x\in U(x_0)) f(x)=n=0n!f(n)(x0)(xx0)nnlimRn(x)=nlim(n+1)!f(n+1)(ξ)(xx0)n+1=0(xU(x0))

    • 定理2(唯一性):若 f ( x ) f(x) f(x)能展开成 x x x的幂级数,则展式唯一,即为 f ( x ) f(x) f(x)麦克劳林级数 ∑ n = 0 ∞ f ( n ) ( 0 ) n ! x n \color{red}\sum\limits_{n=0}^\infty \dfrac{f^{(n)}(0)}{n!}x^n n=0n!f(n)(0)xn

例: 将 f ( x ) = x arctan ⁡ x − ln ⁡ 1 + x 2 展 开 成 麦 克 劳 林 级 数 \color{blue}将f(x)=x\arctan x-\ln\sqrt{1+x^2}展开成麦克劳林级数 f(x)=xarctanxln1+x2
解:
f ′ ( x ) = arctan ⁡ x + x 1 + x 2 − x 1 + x 2 = arctan ⁡ x , f ′ ′ ( x ) = 1 x 2 + 1 = 1 − x 2 + x 4 − x 6 + . . . , 且 f ( 0 ) = 0 , f ′ ( 0 ) = 0 , f ′ ′ ( 0 ) = 1. ∴ f ( x ) = 1 2 ! x 2 − 2 ! 4 ! x 4 + 4 ! 6 ! x 6 − . . . − ( 2 n − 4 ) ! ( 2 n − 2 ) ! x 2 n − 2 = ∑ n = 0 ∞ ( − 1 ) n + 1 ( 2 n − 1 ) ( 2 n ) x 2 n . f'(x)=\arctan x+\dfrac{x}{1+x^2}-\dfrac{x}{1+x^2}=\arctan x,\\ f''(x)=\dfrac{1}{x^2+1}=1-x^2+x^4-x^6+...,\\ 且f(0)=0,f'(0)=0,f''(0)=1.\\ \therefore f(x)=\dfrac{1}{2!}x^2-\dfrac{2!}{4!}x^4+\dfrac{4!}{6!}x^6-...-\dfrac{(2n-4)!}{(2n-2)!}x^{2n-2}=\sum\limits_{n=0}^\infty \dfrac{(-1)^{n+1}}{(2n-1)(2n)}x^{2n}. f(x)=arctanx+1+x2x1+x2x=arctanx,f(x)=x2+11=1x2+x4x6+...,f(0)=0,f(0)=0,f(0)=1.f(x)=2!1x24!2!x4+6!4!x6...(2n2)!(2n4)!x2n2=n=0(2n1)(2n)(1)n+1x2n.

  • 5.函数的幂级数展开

    • 直接展开法
      • ⨀ \color{red}\bigodot 第一步:求各阶导数 f ( k ) ( 0 ) f^{(k)}(0) f(k)(0),若某阶导数不存在,则不能展开。
      • ⨀ \color{red}\bigodot 第二步:构造麦克劳林级数,找收敛半径
      • ⨀ \color{red}\bigodot 第三步:在收敛区间中,验证 lim ⁡ n → ∞ R n ( x ) = 0 \lim\limits_{n\rightarrow\infty}R_n(x)=0 nlimRn(x)=0是否成立

    例: 将 sin ⁡ x 展 开 成 x 的 幂 函 数 \color{blue}将\sin x展开成x的幂函数 sinxx

    解:
    f ( n ) ( x ) = sin ⁡ ( x + n ⋅ π 2 )    ( n = 0 , 1 , 2 , . . . ) . 对 于 x ∈ ( − ∞ , ∞ ) , 有 ∣ R n ( x ) ∣ = ∣ 1 ( n + 1 ) ! sin ⁡ ( ξ + n + 1 2 π ) ⋅ x n + 1 ∣ ≤ ∣ x ∣ n + 1 ( n + 1 ) ! . ∴ lim ⁡ n → ∞ R n ( x ) = 0    ( x ∈ ( − ∞ , ∞ ) ) 于 是 sin ⁡ x = x − x 3 3 ! + x 5 5 ! + . . . + ( − 1 ) n x 2 n + 1 ( 2 n + 1 ) ! + . . .    ( x ∈ ( − ∞ , ∞ ) ) f^{(n)}(x)=\sin(x+n\cdot \dfrac{\pi}{2})\;(n=0,1,2,...).\\ 对于x\in(-\infty,\infty),有|R_n(x)|=|\dfrac{1}{(n+1 )!}\sin(\xi+\dfrac{n+1}{2}\pi)\cdot x^{n+1}|\le\dfrac{|x|^{n+1}}{(n+1)!}.\\ \therefore \lim\limits_{n\rightarrow\infty}R_n(x)=0\;(x\in(-\infty,\infty))\\ 于是\sin x=x-\dfrac{x^3}{3!}+\dfrac{x^5}{5!}+...+(-1)^n\dfrac{x^{2n+1}}{(2n+1)!}+...\;(x\in(-\infty,\infty)) f(n)(x)=sin(x+n2π)(n=0,1,2,...).x(,),Rn(x)=(n+1)!1sin(ξ+2n+1π)xn+1(n+1)!xn+1.nlimRn(x)=0(x(,))sinx=x3!x3+5!x5+...+(1)n(2n+1)!x2n+1+...(x(,))

    • 间接展开法:用已知求未知(变量替换,逐项求导

常见已知:(奇/偶函数展开只有奇/偶数次项)
1 1 + x = ∑ n = 0 ∞ ( − 1 ) n x n = 1 − x + x 2 − x 3 + . . . + ( − 1 ) n x n + . . . ( − 1 < x < 1 ) 1 1 − x = ∑ n = 0 ∞ x n = 1 + x + x 2 + . . . + x n + . . . ( − 1 < x < 1 ) e x = ∑ n = 0 ∞ 1 n ! x n = 1 + x + 1 2 ! x 2 + . . . + 1 n ! x n + . . . ( − ∞ < x < ∞ ) sin ⁡ x = ∑ n = 0 ∞ ( − 1 ) n ( 2 n + 1 ) ! x 2 n + 1 = x − x 3 3 ! + x 5 5 ! + . . . + ( − 1 ) n x 2 n + 1 ( 2 n + 1 ) ! + . . . ( − ∞ < x < + ∞ ) cos ⁡ x = ∑ n = 0 ∞ ( − 1 ) n ( 2 n ) ! x 2 n = 1 − x 2 2 ! + x 4 4 ! + . . . + ( − 1 ) n x 2 n ( 2 n ) ! + . . . ( − ∞ < x < ∞ ) ( 1 + x ) α = ∑ n = 0 ∞ α ( α − 1 ) . . . ( α − n + 1 ) n ! x n = 1 + α x + α ( α − 1 ) 2 ! x 2 + . . . + α ( α − 1 ) . . . ( α − n + 1 ) n ! x n + . . . ( − 1 < x < + ∞ ) \dfrac{1}{1+x}={\color{red}\sum\limits_{n=0}^\infty (-1)^nx^n} =1-x+x^2-x^3+...+(-1)^nx^n+...\qquad(-1<x<1)\\ \dfrac{1}{1-x}={\color{red}\sum\limits_{n=0}^\infty x^n} =1+x+x^2+...+x^n+...\qquad(-1<x<1)\\ e^x={\color{red}\sum\limits_{n=0}^\infty \dfrac{1}{n!}x^n} =1+x+\dfrac{1}{2!} x^2+...+\dfrac{1}{n!} x^n+...\qquad(-\infty<x<\infty)\\ \sin x= {\color{red}\sum\limits_{n=0}^\infty \dfrac{(-1)^n}{(2n+1)!}x^{2n+1}} = x-\dfrac{x^3}{3!}+\dfrac{x^5}{5!}+...+(-1)^n\dfrac{x^{2n+1}}{(2n+1)!}+...\qquad(-\infty<x<+\infty)\\ \cos x= {\color{red}\sum\limits_{n=0}^\infty \dfrac{(-1)^n}{(2n)!}x^{2n}} =1-\dfrac{x^2}{2!}+\dfrac{x^4}{4!}+...+(-1)^n\dfrac{x^{2n}}{(2n)!}+...\qquad(-\infty<x<\infty)\\ (1+x)^\alpha={\color{red} \sum\limits_{n=0}^\infty \dfrac{\alpha(\alpha-1)...(\alpha-n+1)}{n!}x^n}\\ = 1+\alpha x+\dfrac{\alpha(\alpha-1)}{2!}x^2+...+\dfrac{\alpha(\alpha-1)...(\alpha-n+1)}{n!}x^n+...(-1<x<+\infty) 1+x1=n=0(1)nxn=1x+x2x3+...+(1)nxn+...(1<x<1)1x1=n=0xn=1+x+x2+...+xn+...(1<x<1)ex=n=0n!1xn=1+x+2!1x2+...+n!1xn+...(<x<)sinx=n=0(2n+1)!(1)nx2n+1=x3!x3+5!x5+...+(1)n(2n+1)!x2n+1+...(<x<+)cosx=n=0(2n)!(1)nx2n=12!x2+4!x4+...+(1)n(2n)!x2n+...(<x<)(1+x)α=n=0n!α(α1)...(αn+1)xn=1+αx+2!α(α1)x2+...+n!α(α1)...(αn+1)xn+...(1<x<+)
例: 求 f ( x ) = ln ⁡ ( 1 + x ) 展 开 成 幂 函 数 \color{blue}求f(x)=\ln(1+x)展开成幂函数 f(x)=ln(1+x)
f ′ ( x ) = 1 1 + x = ∑ n = 0 ∞ ( − 1 ) n x n , ∣ x ∣ < 1 积 分 得 f ( x ) = ∫ 0 x f ′ ( x ) d x = ∑ n = 0 ∞ ( − 1 ) n n + 1 x n + 1 = x − x 2 2 ! + x 3 3 ! + . . . + ( − 1 ) n − 1 x n ( n ) ! + . . . ( ∣ x ∣ < 1 ) . f'(x)=\dfrac{1}{1+x}=\sum\limits_{n=0}^\infty (-1)^nx^n,|x|<1\\ 积分得f(x) =\int_0^xf'(x)dx={\color{red}\sum\limits_{n=0}^\infty \dfrac{(-1)^n}{n+1}x^{n+1}} =x-\dfrac{x^2}{2!}+\dfrac{x^3}{3!}+...+(-1)^{n-1}\dfrac{x^n}{(n)!}+...(|x|<1). f(x)=1+x1=n=0(1)nxn,x<1f(x)=0xf(x)dx=n=0n+1(1)nxn+1=x2!x2+3!x3+...+(1)n1(n)!xn+...(x<1).

例:例: 求 f ( x ) = arcsin ⁡ x 开 成 幂 函 数 \color{blue}求f(x)=\arcsin x开成幂函数 f(x)=arcsinx
f ′ ( x ) = 1 1 − x 2 = ∑ n = 0 ∞ − 1 2 ( − 1 2 − 1 ) . . . ( − 1 2 − n + 1 ) n ! ( − x 2 ) n = 1 + ∑ n = 1 ∞ ( 2 n − 1 ) ! ! ( 2 n ) ! ! x 2 n , ∣ x ∣ < 1 积 分 得 f ( x ) = ∫ 0 x f ′ ( x ) d x = x + ∑ n = 1 ∞ ( 2 n − 1 ) ! ! ( 2 n ) ! ! ( 2 n + 1 ) x 2 n + 1 = x − 1 6 ! x 3 + 3 40 x 5 + . . . + ( 2 n − 1 ) ! ! ( 2 n ) ! ! ( 2 n + 1 ) x 2 n + 1 + . . . ( ∣ x ∣ < 1 ) . f'(x)=\dfrac{1}{\sqrt{1-x^2}}=\sum\limits_{n=0}^\infty \dfrac{-{1\over2}(-{1\over2}-1)...(-{1\over2}-n+1)}{n!}(-x^2)^n = 1+\sum\limits_{n=1}^\infty \dfrac{(2n-1)!!}{(2n)!!}x^{2n},|x|<1\\ 积分得f(x) =\int_0^xf'(x)dx={\color{red}x+\sum\limits_{n=1}^\infty \dfrac{(2n-1)!!}{(2n)!!(2n+1)}x^{2n+1}} \\ =x-\dfrac{1}{6!}x^3+\dfrac{3}{40}x^5+...+\dfrac{(2n-1)!!}{(2n)!!(2n+1)}x^{2n+1}+...(|x|<1). f(x)=1x2 1=n=0n!21(211)...(21n+1)(x2)n=1+n=1(2n)!!(2n1)!!x2n,x<1f(x)=0xf(x)dx=x+n=1(2n)!!(2n+1)(2n1)!!x2n+1=x6!1x3+403x5+...+(2n)!!(2n+1)(2n1)!!x2n+1+...(x<1).

  • 6.应用
    • 近似计算
    • 欧拉公式 e i x = cos ⁡ x + i sin ⁡ x e^{ix}=\cos x+i\sin x eix=cosx+isinx e − i x = cos ⁡ x − i sin ⁡ x e^{-ix}=\cos x-i\sin x eix=cosxisinx.

10.4 傅里叶级数

引入:当许多周期函数不是无穷次可导时,不能展开成幂级数,但是可以考虑展开成周期函数之和

  • 三角函数系的正交性

    • 三角函数系 1 , cos ⁡ x , sin ⁡ x , . . . , cos ⁡ n x , sin ⁡ n x 1,\cos x,\sin x,...,\cos nx, \sin nx 1,cosx,sinx,...,cosnx,sinnx

    • 性质(正交性):在 [ − π , π ] [-\pi,\pi] [π,π],函数系中任意两不同函数乘积的积分为0,相同函数乘积的积分为 π \pi π
      ∫ − π π 1 ⋅ cos ⁡ n x   d x = ∫ − π π 1 ⋅ sin ⁡ n x   d x = 0 ( n = 1 , 2 , . . . ) ∫ − π π sin ⁡ m x ⋅ cos ⁡ n x   d x = ∫ − π π sin ⁡ m x ⋅ sin ⁡ n x   d x = ∫ − π π cos ⁡ m x ⋅ cos ⁡ n x   d x = 0 ( m , n = 1 , 2 , . . . ) 1 2 ∫ − π π 1 2   d x = ∫ − π π sin ⁡ 2 n x   d x = ∫ − π π cos ⁡ 2 n x   d x = π ( n = 1 , 2 , . . . ) \int_{-\pi}^{\pi}1\cdot \cos nx\,dx =\int_{-\pi}^{\pi}1\cdot \sin nx\,dx =0\qquad(n=1,2,...)\\ \int_{-\pi}^{\pi}\sin mx\cdot \cos nx\,dx = \int_{-\pi}^{\pi}\sin mx\cdot \sin nx\,dx = \int_{-\pi}^{\pi}\cos mx\cdot \cos nx\,dx = 0\qquad(m,n=1,2,...)\\ {1\over2}\int_{-\pi}^{\pi}1^2\,dx = \int_{-\pi}^{\pi}\sin^2 nx\,dx = \int_{-\pi}^{\pi}\cos^2 nx\,dx = \pi\qquad(n=1,2,...) ππ1cosnxdx=ππ1sinnxdx=0(n=1,2,...)ππsinmxcosnxdx=ππsinmxsinnxdx=ππcosmxcosnxdx=0(m,n=1,2,...)21ππ12dx=ππsin2nxdx=ππcos2nxdx=π(n=1,2,...)

  • 周期函数的傅里叶级数

    • 定义
      • 三角级数 f ( x ) ∼ a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n x + b n sin ⁡ n x ) f(x)\sim\dfrac{a_0}{2}+\sum\limits_{n=1}^\infty(a_n\cos nx+b_n\sin nx) f(x)2a0+n=1(ancosnx+bnsinnx)
      • 傅里叶系数 { a n = 1 π ∫ − π π f ( x ) cos ⁡ n x   d x ( n = 0 , 1 , 2 , . . . ) b n = 1 π ∫ − π π f ( x ) sin ⁡ n x   d x ( n = 1 , 2 , . . . ) \begin{cases}\color{red}a_n=\dfrac{1}{\pi}\int_{-\pi}^{\pi}f(x)\cos nx\,dx(n=0,1,2,...) \\\color{red}b_n=\dfrac{1}{\pi}\int_{-\pi}^{\pi}f(x)\sin nx\,dx(n=1,2,...)\end{cases} an=π1ππf(x)cosnxdx(n=0,1,2,...)bn=π1ππf(x)sinnxdx(n=1,2,...)
      • 证明:利用正交性,分别用 cos ⁡ m x , sin ⁡ m x \cos mx,\sin mx cosmx,sinmx乘以展开式两端再积分
    • 注意
      • 条件 f ( x ) f(x) f(x) [ − π , π ] [-\pi,\pi] [π,π]有界可积
      • f ( x ) f(x) f(x)的傅里叶级数在 [ − π , π ] [-\pi,\pi] [π,π]不一定收敛,更不一定收敛于 f ( x ) f(x) f(x)
  • 2 π 2\pi 2π为周期的函数的傅里叶展开

    • 收敛(狄利克雷)定理:若周期函数在周期内分段连续分段单调,则 f ( x ) f(x) f(x)的傅里叶级数收敛,且其和函数为 S ( x ) = { f ( x ) x 为 连 续 点 f ( x + 0 ) + f ( x − 0 ) 2 x 为 间 断 点 S(x)=\begin{cases}f(x)&x为连续点\\\dfrac{f(x+0)+f(x-0)}{2}&x为间断点 \end{cases} S(x)=f(x)2f(x+0)+f(x0)xx

      • 分段连续:在区间内连续或只有有限个第一类间断点
      • 分段单调:在区间内只有有限个单调区间(有限个极值点)
        推论:由周期性,总有 s ( ± π ) = f ( − π + 0 ) + f ( π − 0 ) 2 s(\pm\pi)=\dfrac{f(-\pi+0)+f(\pi-0)}{2} s(±π)=2f(π+0)+f(π0).
        周期延拓
      1. ​ 定义在 ( − ∞ , + ∞ ) \color{red}(-\infty, +\infty) (,+)上以 2 π 2\pi 2π为周期的函数 F ( x ) F(x) F(x),若满足定理条件,在 ( − π , π ) (-\pi,\pi) (π,π)上傅里叶系数仍成立(其中的 f ( x ) f(x) f(x) F ( x ) F(x) F(x)限制在 ( − π , π ) (-\pi,\pi) (π,π)上的函数)
      2. 定义在 ( − π , + π ) \color{red}(-\pi, +\pi) (π,+π)上的函数 f ( x ) f(x) f(x),若满足定理条件,可将 f ( x ) f(x) f(x)延拓为以 2 π 2\pi 2π为周期的函数 F ( x ) F(x) F(x)
    • 奇/偶函数展开成正/余弦函数:若 f ( x ) f(x) f(x) ( − π , π ) (-\pi,\pi) (π,π)上为奇/偶函数

      • 奇函数: { a n = 1 π ∫ − π π f ( x ) cos ⁡ n x   d x = 0 ( n = 0 , 1 , 2 , . . . ) b n = 1 π ∫ − π π f ( x ) sin ⁡ n x   d x = 2 π ∫ 0 π f ( x ) sin ⁡ n x   d x ( n = 1 , 2 , . . . ) \begin{cases}\color{red}a_n=\dfrac{1}{\pi}\int_{-\pi}^{\pi}f(x)\cos nx\,dx=0\qquad(n=0,1,2,...) \\\color{red}b_n=\dfrac{1}{\pi}\int_{-\pi}^{\pi}f(x)\sin nx\,dx = \dfrac{2}{\pi}\int_{0}^{\pi}f(x)\sin nx\,dx\qquad(n=1,2,...)\end{cases} an=π1ππf(x)cosnxdx=0(n=0,1,2,...)bn=π1ππf(x)sinnxdx=π20πf(x)sinnxdx(n=1,2,...)
        此时 f ( x ) = ∑ n = 1 ∞ b n sin ⁡ n x f(x)=\sum\limits_{n=1}^\infty b_n\sin nx f(x)=n=1bnsinnx,称为正弦函数
      • 偶函数: { a n = 2 π ∫ 0 π f ( x ) cos ⁡ n x   d x ( n = 0 , 1 , 2 , . . . ) b n = 0 ( n = 1 , 2 , . . . ) \begin{cases}\color{red}a_n=\dfrac{2}{\pi}\int_{0}^{\pi}f(x)\cos nx\,dx\qquad(n=0,1,2,...) \\\color{red}b_n=0\qquad(n=1,2,...)\end{cases} an=π20πf(x)cosnxdx(n=0,1,2,...)bn=0(n=1,2,...)
        此时 f ( x ) = a 0 2 + ∑ n = 1 ∞ a n cos ⁡ n x f(x)=\dfrac{a_0}{2}+\sum\limits_{n=1}^\infty a_n\cos nx f(x)=2a0+n=1ancosnx,称为余弦函数
    • 非周期函数的周期性开拓:将定义在 [ 0 , π ] \color{red}[0,\pi] [0,π]上的函数 f ( x ) f(x) f(x),延拓成以 2 π 2\pi 2π为周期的函数 F ( x ) F(x) F(x).
      F ( x ) = { f ( x ) 0 ≤ x ≤ π g ( x ) − π < x < 0 F(x)=\begin{cases}f(x)&0\le x\le\pi\\g(x)&-\pi<x<0 \end{cases} F(x)={f(x)g(x)0xππ<x<0,且 F ( x + 2 π ) = F ( x ) F(x+2\pi)=F(x) F(x+2π)=F(x).

      • 奇延拓: F ( x ) = { f ( x ) 0 < x ≤ π 0 x = 0 g ( x ) = − f ( − x ) − π < x < 0 F(x)={\color{red}\begin{cases}f(x)&0<x\le\pi\\0&x=0 \\g(x)=-f(-x)&-\pi<x<0 \end{cases}} F(x)=f(x)0g(x)=f(x)0<xπx=0π<x<0
        此时 f ( x ) = ∑ n = 1 ∞ b n sin ⁡ n x ( 0 ≤ x ≤ π ) f(x)=\sum\limits_{n=1}^\infty b_n\sin nx \qquad (0\le x\le\pi) f(x)=n=1bnsinnx(0xπ),称为正弦函数
      • 偶延拓: F ( x ) = { f ( x ) 0 ≤ x ≤ π g ( x ) = f ( − x ) − π < x < 0 F(x)={\color{red}\begin{cases}f(x)&0\le x\le\pi\\\\g(x)=f(-x)&-\pi<x<0 \end{cases}} F(x)=f(x)g(x)=f(x)0xππ<x<0
        此时 f ( x ) = a 0 2 + ∑ n = 1 ∞ a n cos ⁡ n x ( 0 ≤ x ≤ π ) f(x)=\dfrac{a_0}{2}+\sum\limits_{n=1}^\infty a_n\cos nx \qquad (0\le x\le\pi) f(x)=2a0+n=1ancosnx(0xπ),称为余弦函数

例: 将 函 数 f ( x ) = { − x , − π ≤ x < 0 x , 0 ≤ x ≤ π 展 开 成 傅 里 叶 级 数 , 并 求 ∑ n = 1 ∞ 1 n 2 \color{blue}将函数f(x)=\begin{cases} -x,&-\pi\le x<0\\x,&0\le x\le\pi \end{cases}展开成傅里叶级数,并求\sum\limits_{n=1}^\infty \dfrac{1}{n^2} f(x)={x,x,πx<00xπ,n=1n21.
解:
所 给 函 数 满 足 狄 利 克 雷 充 分 条 件 , 故 延 拓 为 周 期 函 数 F ( x ) 在 ( − π , π ) 的 展 开 式 收 敛 于 f ( x ) . a 0 = 1 π ∫ − π 0 ( − x )   d x + 1 π ∫ 0 π x   d x = π a n = 1 π ∫ − π 0 ( − x ) cos ⁡ n x   d x + 1 π ∫ 0 π x cos ⁡ n x   d x = 1 2 n 2 π [ ( − 1 ) n − 1 ] b n = 1 π ∫ − π 0 ( − x ) sin ⁡ n x   d x + 1 π ∫ 0 π x sin ⁡ n x   d x = 0 ∴ f ( x ) = π 2 − 4 π ∑ n = 1 ∞ 1 ( 2 n − 1 ) 2 cos ⁡ ( 2 n − 1 ) x ( − π ≤ x ≤ π ) 当 x = 0 时 , f ( 0 ) = 0 , π 2 8 = 1 + 1 3 2 + 1 5 2 + . . . 易 得 ∑ n = 1 ∞ 1 n 2 = π 2 6 . {\color{red}所给函数满足狄利克雷充分条件},故延拓为周期函数F(x)在(-\pi,\pi)的展开式收敛于f(x).\\ a_0=\dfrac{1}{\pi}\int_{-\pi}^0 (-x)\,dx+\dfrac{1}{\pi}\int_0^{\pi} x\,dx=\pi\\ a_n=\dfrac{1}{\pi}\int_{-\pi}^0 (-x)\cos nx\,dx+\dfrac{1}{\pi}\int_0^{\pi} x\cos nx\,dx=\dfrac{1}{2n^2\pi}[(-1)^n-1] \\ b_n=\dfrac{1}{\pi}\int_{-\pi}^0 (-x)\sin nx\,dx+\dfrac{1}{\pi}\int_0^{\pi} x\sin nx\,dx=0 \\ \therefore f(x)=\dfrac{\pi}{2}-\dfrac{4}{\pi}\sum\limits_{n=1}^\infty \dfrac{1}{(2n-1)^2}\cos(2n-1)x\qquad (-\pi\le x\le\pi)\\ 当x=0时,f(0)=0,\dfrac{\pi^2}{8}=1+{1\over 3^2}+{1\over 5^2}+...\\ 易得\sum\limits_{n=1}^\infty \dfrac{1}{n^2}=\dfrac{\pi^2}{6}. ,F(x)(π,π)f(x).a0=π1π0(x)dx+π10πxdx=πan=π1π0(x)cosnxdx+π10πxcosnxdx=2n2π1[(1)n1]bn=π1π0(x)sinnxdx+π10πxsinnxdx=0f(x)=2ππ4n=1(2n1)21cos(2n1)x(πxπ)x=0f(0)=0,8π2=1+321+521+...n=1n21=6π2.
例: 周 期 为 2 π 的 连 续 函 数 f ( x ) = a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n x + b n sin ⁡ n x ) 可 逐 项 积 分 , 证 明 : 1 π ∫ − π π f ( x ) 2   d x = a 0 2 2 + ∑ n = 1 ∞ ( a n 2 + b n 2 ) \color{blue}周期为2\pi的连续函数f(x)=\dfrac{a_0}{2}+\sum\limits_{n=1}^\infty(a_n\cos nx+b_n\sin nx)可逐项积分,\\\color{blue}证明:\dfrac{1}{\pi}\int_{-\pi}^{\pi}f(x)^2\,dx =\dfrac{a_0^2}{2}+\sum\limits_{n=1}^\infty(a_n^2+b_n^2) 2πf(x)=2a0+n=1(ancosnx+bnsinnx),π1ππf(x)2dx=2a02+n=1(an2+bn2).
解:
L H S = 1 π ∫ − π π a 0 2 f ( x )   d x + 1 π ∫ − π π ∑ n = 1 ∞ a n cos ⁡ n x ⋅ f ( x )   d x + 1 π ∫ − π π ∑ n = 1 ∞ b n sin ⁡ n x ⋅ f ( x )   d x = a 0 2 1 π ∫ − π π f ( x )   d x + ∑ n = 1 ∞ a n 1 π ∫ − π π f ( x ) cos ⁡ n x   d x + ∑ n = 1 ∞ b n 1 π ∫ − π π f ( x ) sin ⁡ n x   d x = R H S . LHS=\dfrac{1}{\pi}\int_{-\pi}^{\pi}\dfrac{a_0}{2}f(x)\,dx +\dfrac{1}{\pi}\int_{-\pi}^{\pi} \sum\limits_{n=1}^\infty a_n\cos nx\cdot f(x)\,dx +\dfrac{1}{\pi}\int_{-\pi}^{\pi} \sum\limits_{n=1}^\infty b_n\sin nx\cdot f(x)\,dx\\ =\dfrac{a_0}{2}\dfrac{1}{\pi}\int_{-\pi}^{\pi}f(x)\,dx +\sum\limits_{n=1}^\infty a_n\dfrac{1}{\pi}\int_{-\pi}^{\pi} f(x)\cos nx\,dx +\sum\limits_{n=1}^\infty b_n\dfrac{1}{\pi}\int_{-\pi}^{\pi} f(x)\sin nx\,dx=RHS. LHS=π1ππ2a0f(x)dx+π1ππn=1ancosnxf(x)dx+π1ππn=1bnsinnxf(x)dx=2a0π1ππf(x)dx+n=1anπ1ππf(x)cosnxdx+n=1bnπ1ππf(x)sinnxdx=RHS.

  • 2 l 2l 2l为周期的函数的傅里叶展开
    • 若满足收敛定理条件,则傅里叶级数 a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n π x l + b n sin ⁡ n π x l ) \dfrac{a_0}{2}+\sum\limits_{n=1}^\infty(a_n\cos \dfrac{n\pi x}{l}+b_n\sin \dfrac{n\pi x}{l}) 2a0+n=1(ancoslnπx+bnsinlnπx) 收敛

      其中傅里叶系数 { a n = 1 l ∫ − l l f ( x ) cos ⁡ n π x l   d x ( n = 0 , 1 , 2 , . . . ) b n = 1 l ∫ − l l f ( x ) sin ⁡ n π x l   d x ( n = 1 , 2 , . . . ) \begin{cases}\color{red}a_n=\dfrac{1}{l}\int_{-l}^{l}f(x)\cos \dfrac{n\pi x}{l}\,dx(n=0,1,2,...) \\ \color{red}b_n=\dfrac{1}{l}\int_{-l}^{l}f(x)\sin \dfrac{n\pi x}{l}\,dx(n=1,2,...)\end{cases} an=l1llf(x)coslnπxdx(n=0,1,2,...)bn=l1llf(x)sinlnπxdx(n=1,2,...)

  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值