大数据的应用:给顾客打上几百个标签

数据的两个经典案例

用两个著名的营销案例来引出这次的话题。第一个案例讲的是韩国一家大集团的副总裁到澳大利亚出差,住进了丽思·卡尔顿饭店(RitzCarltonHotel,1992年美国国家品质奖服务类奖得主),他要求将浴室内的润肤乳液换成另一种他常用的产品。服务人员很快满足了他的要求。

三周后,当这位副总裁住进美国新墨西哥的丽思·卡尔顿饭店,他发现浴室的架子上已摆着他所熟悉的乳液,一种回家的感觉在他心中油然而生。

“凭借信息技术和多一点点的用心,丽思·卡尔顿饭店使宾至如归不再是口号。”丽思·卡尔顿饭店澳大利亚地区品质训练负责人琴·道顿女士说。

另一个故事来自于美国第三大零售商塔吉特百货(Target)。

一天,一名男子闯入他家附近的一家塔吉特店铺抗议:“你们竟然给我17岁的女儿发放婴儿尿片和童车的优惠券!”店铺经理立刻向他承认错误,但是经理并不知道,这“错误”是总公司运行数据挖掘的结果。

一个月后,这位父亲来道歉了,因为这时他才知道他的女儿的确怀孕了。

塔吉特比这位父亲知道他女儿怀孕的时间足足早了一个月!

运用数据挖掘技术,塔吉特能够通过分析女性客户购买记录,“猜出”哪些是孕妇,并推算出预产期,抢先一步将孕妇装、婴儿床等折扣券寄给客户,吸引她购买。

这两个例子,一个发生在酒店业,一个在零售业,前者通过对单个用户的细致关怀提升了品牌形象,后者通过深刻洞察创造了更多销售机会,生动地展示了大数据和数据分析技术对服务业的深刻影响。

在此之前,要么规模化,要么个性化,能否实现规模的个性化?这就是大数据解决的最实际的问题。

尤其是电商公司,数据储存比较丰富,通过大数据分析技术,准确勾勒消费者诸如年龄、收入、住处、外貌、消费偏好等特征,自动地、成规模地对用户分群、画像。你对消费者的每一点数据累积,都让这个画像丰富、成长,更加具象。

当你的每一个顾客都被打上几百个标签之后,他的画像就会更准确,你会比他还了解他的需求。

消费者画像的工作原理

消费者已经光顾过你的网站,那么数据服务公司就能通过场景引擎技术,分析出用户的瞬时和长期消费偏好、阅读偏好,并综合他/她的性别、年龄、婚姻状况、职业等人口统计学信息,构成一幅饱满而又生动的“用户画像”。

一旦这个消费者再次来到网站,你可以通过原先的画像,实时影响他的点击行为。他每刷新一个页面,你都可以实时分析他的即时购物偏好,推测出他此时是否有明确的购买意向,处于购买中的哪个阶段,对什么样的产品有兴趣,而后结合网站的经营目标和业务特点,以及他的购买历史等信息,将最合适的商品展现在他面前。

推荐引擎会追踪用户的购物全过程,根据用户画像和零售行业经验,帮助他挑选商品。

消费者画像就是指路明灯

消费者在网上购物时,不同的点击代表着不同的意图,也包含着不同的信息,每一个点击就像DNA链条一样,包含了很多种复杂的信息,你需要准确地判定自己一厢情愿的定位是否符合事实。

1.男女比例,不是你定的

某服饰公司运营着两个电商网站,一个网站只卖男装,页面只推荐男装;另外一个网站只卖女装,页面只推荐女装。

不过,我们通过用户画像却意外地发现:两个网站的用户群都呈现出很高比例的“情侣用户”或“家庭用户”特征,也就是当一个用户购买男装的时候,对女装也有需求。于是,我们采取了在两家网站交叉推荐商品的策略,结果大大提高了顾客的黏性和客单价。

2.收入情况,不能想当然

国内一家时尚传媒集团觉得自己的读者都是“高端大气上档次,低调奢华有内涵。奔放洋气有深度,狂拽炫酷屌炸天”。所以当该集团做电子商城的时候,其对自己用户的定位是高端时尚达人,商品售价普遍都在1000元以上。

商城上线运营半年后,发现转化率一直非常低。后来进行用户画像分析,发现用户并非主观认为的那样高端时尚,实际购买力其实大多分布在300元左右。他们虽然是该传媒集团的时尚资讯粉丝,但是并不会购买其商城内的正品行货,而是跑去其他网站买仿款了。

这是多么悲催的事情!

3.来自哪里,不可臆测

这个例子发生在团购行业。我们知道,用户在选择一个团单时,会重点考虑地理位置因素,所以某团购网站采用了这样的推荐策略:只推荐本商圈或邻近商圈的团单。

但数据分析发现,很多用户活跃于多个商圈。以北京为例,很多在CBD地区购买团单的用户,也经常在通州购买,他们或许是在通州居住但在CBD工作。所以,在推荐策略上,我们打破了限定单一商圈的禁锢,结果大大提高了用户的转化率。

4.发什么促销短信,要有根有据

考虑一下这样的场景:一个商场的洗衣机做促销活动,我们可以通过用户画像,筛选出若干批符合这次活动的人群或会员。

假设用户群A最符合本次活动,用户群B次之,用户群C最后。

对A,商场发送频次不等的个性化短信;对B,发送个性化邮件;对C,则适当发送、投递宣传资料。

对于A,导购会直接向他们介绍洗衣机活动,并提供一个不错的折扣;对于B,导购会详细介绍洗衣机和其他家电,刺激他们的需求;对于C,则可能任由他们在店内自由闲逛。

5.搞调查,还是画像靠谱

以银行为代表的金融领域,是离消费最近,也是最需要消费数据支持的领域。

国内某知名银行的信用卡中心想全面了解其在线申请信用卡和贷款用户的特征,了解哪些用户的消费能力高并且信用好。

传统做法是通过在线问卷和电话回访,评估用户的购买力和信用状况。不过,这些问卷中涉及的数据很少,而且很多可以造假,很难做出准确的评估,而电话回访的代价又很高,不方便全面推行。

而用户画像正好可以派上用场:用户最近在衣、食、住、行、玩等各个方面的消费金额和消费频次,可以很客观地描述他的购买力;用户经常访问的社区论坛、媒体网站,可以很全面地了解他的社会属性,比如属于哪个社交圈子、生活品位等等。

有了这些数据,银行可以对申请人做出更好判断,是否给他发信用卡,发什么类型的信用卡,透支额度多大;或是否为他提供贷款,贷款额度多大,贷款利率多少等等。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值