Machine Learning
jimzhou82
用数学和代码改变生活
展开
-
再学西瓜书----chapter9 k-mean 均值聚类
? K-means是有监督聚类还是无监督聚类 无监督问题, 还有pca降维也是无监督问题。 ? K-means 聚类方法步骤 1:首先确定一个k值,即我们希望将数据集经过聚类得到k个集合。 2:从数据集中随机选择k个数据点作为质心。 3:对数据集中每一个点,计算其与每一个质心的距离(如欧式距离),离哪个质心近,就划分到那个质心所属的集合。 4:把所有数据归好集合后,一共有k个集合。然后重新计算每个集合的质心。 5:如果新计算出来的质心和原来的质心之间的距离小于某一个设置的阈值(表示重新计算的质心的位置变原创 2020-06-30 10:53:53 · 321 阅读 · 0 评论 -
再学西瓜书----chapter6 支持向量机SVM
Page 121~Page 123 比较好的推文可以参考这篇,讲的比西瓜书详细 关于svm的推导不准备赘述了,这里只注重结论, 超平面 wTx+ b = 0 对于线性可分的情况,超平面其实是我们需要求的东西 支持向量 就是离超平面最近的向量,可以是一个可以是多个 根据相关公式推导:最终要求的最优的超平面其实只要优化 凸函数: 对于一元函数f(x),我们可以通过其二阶导数f″(x) 的符号来判断。如果函数的二阶导数总是非负,即f″(x)≥0 ,则f(x)是凸函数对于多元函数f(x),我们可以通过其Hes翻译 2020-06-29 15:53:18 · 226 阅读 · 0 评论