deep learning
jimzhou82
用数学和代码改变生活
展开
-
再学西瓜书----chapter9 k-mean 均值聚类
? K-means是有监督聚类还是无监督聚类 无监督问题, 还有pca降维也是无监督问题。 ? K-means 聚类方法步骤 1:首先确定一个k值,即我们希望将数据集经过聚类得到k个集合。 2:从数据集中随机选择k个数据点作为质心。 3:对数据集中每一个点,计算其与每一个质心的距离(如欧式距离),离哪个质心近,就划分到那个质心所属的集合。 4:把所有数据归好集合后,一共有k个集合。然后重新计算每个集合的质心。 5:如果新计算出来的质心和原来的质心之间的距离小于某一个设置的阈值(表示重新计算的质心的位置变原创 2020-06-30 10:53:53 · 321 阅读 · 0 评论 -
再学花书----chapter6 前馈神经网络
深度前馈网络(deep feedforward network): 也叫作 前馈神经网络(feedforward neural network)或者 多层感知机(multilayer perceptron, MLP),是典型的深度学习模型。前馈网络的目标是近似某个函数 f∗。 线性模型: 线性模型,例如逻辑回归和线性回归,是非常吸引人的, 因为无论是通过闭解形式还是使用凸优化,它们都能高效且可靠地拟合。线性模型也有明显的缺陷,那就是该模型的能力被局限在线性函数里,所以它无法理解任何两个输入变量间的相互作用原创 2020-06-23 17:59:01 · 167 阅读 · 0 评论