深度学习:LSTM简介

循环神经网络(Recurrent Neural Network,RNN)

RNN是一种用于处理序列数据的神经网络。相比一般网络,他能够处理序列变化的数据。比如某个单词的意思会因为上下文提到的内容不同而有不同的含义,RNN就能够很好的解决这类问题。
其主要形式如图所示:
RNN图示
其中:
x为当前状态下数据的输入,h 表示接收到的上一个节点的输入
y为当前节点状态下的输出,h‘为传递到下一个节点的输出

通过图示可知道h’与x和h的值都相关,而y则常常使用h’投入到一个线性层(主要是维度映射),然后使用softmax进行分类得到需要的数据。对这里的y如何通过h’计算得到往往看具体模型的使用方式。
通过序列形式的输入,我们可以得到如下形式的RNN:
RNN序列

LSTM

长短期记忆(long short-term memory,LSTM)是一种特殊的RNN,主要是为了解决长序列训练过程中的梯度消失和梯度爆炸问题。简单来说就是比普通RNN在更长的序列中有更好的表现。
LSTM和普通RNN主要输入输出区别:
区别
相比RNN的单个传递状态 h t h^t ht,LSTM有两个传输状态,一个 c t c^t ct(cell state),和一个 h t h^t ht(hidden state)。(RNN中 h t h^t ht的相当于LSTM中的 c t c^t ct
其中对于传递下去的 c t c^t ct改变的很慢,通常输出的 c t c^t ct是上一个状态传过来的 c t − 1 c^{t-1} ct1加上一些数值

LSTM结构

首先使用LSTM的当前输入$ x^t 和 上 一 个 状 态 传 递 下 来 的 和上一个状态传递下来的 h^{t-1} 拼 接 训 练 得 到 四 个 状 态 。 ! [ l s t m 结 构 ] ( h t t p s : / / i m g − b l o g . c s d n i m g . c n / 20190301110535614. j p e g ? x − o s s − p r o c e s s = i m a g e / w a t e r m a r k , t y p e Z m F u Z 3 p o Z W 5 n a G V p d G k , s h a d o w 1 0 , t e x t a H R 0 c H M 6 L y 9 i b G 9 n L m N z Z G 4 u b m V 0 L 3 F x X z M z O D c 2 M T k 0 , s i z e 1 6 , c o l o r F F F F F F , t 7 0 ) 其 中 , 拼接训练得到四个状态。 ![lstm结构](https://img-blog.csdnimg.cn/20190301110535614.jpeg?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzMzODc2MTk0,size_16,color_FFFFFF,t_70) 其中, ![lstm](https://imgblog.csdnimg.cn/20190301110535614.jpeg?xossprocess=image/watermark,typeZmFuZ3poZW5naGVpdGk,shadow10,textaHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzMzODc2MTk0,size16,colorFFFFFF,t70) z^f $ , z i z^i zi z o z^o zo 是由拼接向量乘以权重矩阵之后,再通过一个 sigmoid 激活函数转换成0到1之间的数值,来作为一种门控状态。而 z 则是将结果通过一个 tanh 激活函数将转换成-1到1之间的值(这里使用 tanh 是因为这里是将其做为输入数据,而不是门控信号)。
下面开始进一步介绍这四个状态在LSTM内部的使用。
门控
⊙ \odot 是Hadamard Product,也就是操作矩阵中对应的元素相乘,因此要求两个相乘矩阵是同型的。 ⊕ \oplus 则代表进行矩阵加法。
LSTM内部主要有三个阶段:

  1. 忘记阶段,遗忘门。这个阶段主要是对上一个节点传进来的输入进行选择性忘记。简单来说就是’忘记不重要的,记住重要的‘。具体来说就是通过计算得到的 z f z^f zf(f表示forget)来作为忘记门控,来控制上一个状态的 c t − 1 c^{t-1} ct1哪些需要留哪些需要忘。
  2. 选择记忆阶段,输入门。这个阶段将这个阶段的输入有选择性地进行’记忆‘。主要是会对输入 x t x^t xt 进行选择记忆。重要部分多记录,不重要的少记录。当前的输入由前面计算得到的 z 表示。而选择的门控信号则是由 z i z^i zi (i代表information)来进行控制。将上面两步得到的结果相加,即可得到传输给下一个状态的 c t c^t ct。也就是上图中的第一个公式.
  3. 输出阶段,输出门。这个阶段将决定哪些将会被作为当前状态的输出。主要是通过 z o z^o zo来进行控制的。并且还对上一阶段得到的 c o c^o co进行了放缩(通过一个tanh激活函数进行变化)。与普通RNN类似,输出 y t y^t yt往往最终也是通过 h t h^t ht变化得到。

逐步理解LSTM

我们 LSTM 中的第一步是决定我们会从细胞状态中丢弃什么信息。这个决定通过一个称为忘记门层完成。该门会读取 h t − 1 h_{t-1} ht1 x t x_t xt,输出一个在 0 到 1 之间的数值给每个在细胞状态 C t − 1 C_{t-1} Ct1中的数字。1 表示“完全保留”,0 表示“完全舍弃”。
丢弃一些信息
下一步是确定什么样的新信息被存放在细胞状态中。这里包含两个部分。第一, s i g m o i d sigmoid sigmoid 层称 “输入门层” 决定什么值我们将要更新。然后,一个 t a n h tanh tanh 层创建一个新的候选值向量, C ~ t \tilde{C}_t C~t,会被加入到状态中。下一步,我们会讲这两个信息来产生对状态的更新。
确定更新信息
现在是更新旧细胞状态的时间了, C t − 1 C_{t-1} Ct1 更新为 C t C_t Ct。前面的步骤已经决定了将会做什么,我们现在就是实际去完成。

我们把旧状态与 f t f_t ft 相乘,丢弃掉我们确定需要丢弃的信息。接着加上 i t ∗ C ~ t i_t * \tilde{C}_t itC~t。这就是新的候选值,根据我们决定更新每个状态的程度进行变化。
更新细胞状态
最终,我们需要确定输出什么值。这个输出将会基于我们的细胞状态,但是也是一个过滤后的版本。首先,我们运行一个 sigmoid 层来确定细胞状态的哪个部分将输出出去。接着,我们把细胞状态通过 tanh 进行处理(得到一个在 -1 到 1 之间的值)并将它和 sigmoid 门的输出相乘,最终我们仅仅会输出我们确定输出的那部分
输出信息

小结

以上就是LSTM的内部结构。通过门控状态来控制传输状态,记住需要长时间记忆的,忘记不重要的信息;而不像普通的RNN那样只能够“呆萌”地仅有一种记忆叠加方式。对很多需要“长期记忆”的任务来说,尤其好用。
但也因为引入了很多内容,导致参数变多,也使得训练难度加大了很多。因此很多时候我们往往会使用效果和LSTM相当但参数更少的GRU来构建大训练量的模型。

GRU:

它将忘记门和输入门合成了一个单一的 更新门。同样还混合了细胞状态和隐藏状态,和其他一些改动。最终的模型比标准的 LSTM 模型要简单,也是非常流行的变体。
GRU

  • 13
    点赞
  • 82
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值