【毕业设计】携程旅行数据采集+可视化+代码

本文详细描述了如何通过Python爬虫抓取携程旅行的航班数据,进行数据清洗、分析,然后使用动态可视化技术实时监控航班流量、预测趋势,为航空公司和旅游规划者提供实时决策支持。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

携程旅行数据采集与动态可视化分析 🌐

文档提供了一个结构化的框架,包括项目背景、实施步骤、可行性分析以及动态可视化的好处和总结。-----尾部有代码

选题背景与意义 🚀

在线旅游服务平台,如携程旅行网,已成为现代旅行规划的核心工具。这些平台积累了大量的用户行为数据和旅游产品信息,对于理解旅游市场动态、优化旅游服务和产品开发具有重要价值。特别是航班数据,对于航空公司、旅游规划者和政策制定者来说,是一个关键的分析领域。通过动态可视化航班数量,我们可以实时监控航班流量,为决策提供支持,并优化旅行体验。

实施步骤 🛠️

数据采集

  1. 确定数据源:选择携程网作为主要数据源,专注于航班信息的采集。
  2. 编写爬虫程序:利用Python的requests库和BeautifulSoup库抓取航班数据。
  3. 数据存储:将采集到的航班信息存储在数据库中,确保数据的可访问性和可扩展性。
    数据采集
    可视化页面

数据清洗与预处理

  1. 数据清洗:去除重复、错误或不完整的数据记录,确保数据质量。
  2. 数据转换:将采集的数据转换为适合分析的格式,如日期时间标准化、地点编码等。

数据分析

  1. 航班数量统计:对不同航线的航班数量进行统计,分析热门航线和时段。
  2. 趋势预测:使用时间序列分析方法,预测未来航班数量的变化趋势。
    采集保持excel的数据

动态可视化 📊

可视化展示

  1. 实时航班地图:利用pyecharts库创建动态地图,实时显示航班的起降情况。
  2. 航班数量变化:通过动态图表展示特定航线的航班数量随时间的变化。
  3. 用户交互:允许用户通过筛选条件(如日期、航空公司、目的地)来查看特定航班数据。

可行性分析 🔍

  1. 技术可行性:现代Web技术和数据可视化工具提供了强大的支持,使得动态可视化成为可能。
  2. 数据量可行性:携程网等平台提供的航班数据量巨大,足以支持复杂的数据分析。
  3. 时间与成本:虽然数据采集和分析需要投入,但考虑到其对旅游行业的贡献,长期来看是值得的。

动态可视化的好处 ✨

  1. 实时监控:动态可视化提供了实时的航班监控能力,有助于及时发现航班异常情况。
  2. 决策支持:为航空公司和旅游规划者提供数据支持,帮助他们做出更合理的调度和规划决策。
  3. 用户体验:用户可以通过动态可视化直观地了解航班信息,提高旅行计划的便捷性和满意度。
  4. 市场分析:动态可视化有助于分析旅游市场的需求变化,为旅游产品的开发和营销策略提供依据。

总结 📝

通过对携程旅行网的航班数据进行采集和动态可视化分析,我们不仅能够为旅游行业提供实时的市场洞察,还能够提升用户体验,优化旅行服务。随着技术的不断进步,未来我们有望实现更加智能化的数据分析和可视化,为旅游行业的发展提供更强大的动力。

代码开源

from pyecharts import options as opts
from pyecharts.charts import Geo
from pyecharts.globals import ChartType, SymbolType, ThemeType
from pyecharts.commons.utils import JsCode
import os
import xlrd
import xlwt

def Make_Map(path):
    print(path)
    workbook = xlrd.open_workbook(path)
    sheet2_name = workbook.sheet_names()[0]
    sheet2 = workbook.sheet_by_index(0)
    print  (sheet2.name,sheet2.nrows,sheet2.ncols)
    row = sheet2.nrows
    data1 = []
    data2 = []
    for i in range(row):
        data1.append([sheet2.row(i)[0].value,sheet2.row(i)[1].value])
        cont = "从" + sheet2.row(i)[0].value  + "到"+ sheet2.row(i)[1].value  +"的航班共有:"  +  str(int(sheet2.row(i)[2].value ))    + "趟"
        data2.append([  sheet2.row(i)[1].value , cont])
    c = (
        Geo(init_opts=opts.InitOpts(theme=ThemeType.WALDEN))
        .add_schema(maptype="china",is_roam=False,zoom=1.2 , label_opts=opts.LabelOpts(is_show=True,color ='#000'))
        .add(
            "",
            data2,
            # list_point,
            type_=ChartType.EFFECT_SCATTER,
            is_large=True,
            color= 'lightblue',
            symbol_size = 10,
            tooltip_opts=opts.TooltipOpts(
            is_show=True,
            )

        )
        .add(
            "geo",
            data1,
            # list,
            type_=ChartType.LINES,
            effect_opts=opts.EffectOpts(
                symbol=SymbolType.TRIANGLE, symbol_size=8, color= '#58c5c7',
            ),
            linestyle_opts=opts.LineStyleOpts(curve=0.3),
            is_large = True

        )

        .set_series_opts(label_opts=opts.LabelOpts(is_show=False,formatter='{b}'  )  )
        .set_global_opts(title_opts=opts.TitleOpts(title= path.split('\\')[-1].split('.')[-2] + "航班可视化") ,legend_opts=opts.LegendOpts(is_show=False) ) # 图例设置为False
        .render(".\\html\\"+ path.split('\\')[-1].split('.')[-2]  + ".html")

    )
    print(path.split('\\')[-1].split('.')[-2] +'地图绘制完成')



def main():
    if os.path.exists('./html') == False:
        os.makedirs('./html')
    for root, dirs, files in os.walk('test'):
        for f in files:
            try:
                Make_Map( ".\\" + os.path.join(root, f))
            except Exception as err:
                print(err)

if __name__ =='__main__':
    main()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值