最高K值的精确率和召回率——Python实现

458 篇文章 11 订阅 ¥129.90 ¥299.90
458 篇文章 2 订阅 ¥119.90 ¥299.90
本文介绍了如何用Python计算最高K值的精确率和召回率,这是评估机器学习模型性能的重要指标。通过提供的代码示例,可以对真实标签和预测概率进行处理,找到最优的K值对应的精确率和召回率。
摘要由CSDN通过智能技术生成

最高K值的精确率和召回率——Python实现

在机器学习中,通常需要评估模型在给定数据集上的性能。常用的评估指标是精确率和召回率。当模型预测的结果正确时,我们称其为真阳性 (True Positive, TP),而当模型预测结果错误时,我们称其为假阳性(False Positive, FP)。同样地,当模型未能检测到真正的正例时,我们称其为假阴性 (False Negative, FN),而当模型成功预测出负例时,我们称其为真阴性 (True Negative, TN)。

精确率(Precision)是指分类器预测结果为正例的样本中,真正正例的比例。公式如下:

P r e c i s i o n =

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

NoABug

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值