最高K值的精确率和召回率——Python实现
在机器学习中,通常需要评估模型在给定数据集上的性能。常用的评估指标是精确率和召回率。当模型预测的结果正确时,我们称其为真阳性 (True Positive, TP),而当模型预测结果错误时,我们称其为假阳性(False Positive, FP)。同样地,当模型未能检测到真正的正例时,我们称其为假阴性 (False Negative, FN),而当模型成功预测出负例时,我们称其为真阴性 (True Negative, TN)。
精确率(Precision)是指分类器预测结果为正例的样本中,真正正例的比例。公式如下:
P r e c i s i o n =