关注并星标
从此不迷路
计算机视觉研究院
公众号ID|ComputerVisionGzq
学习群|扫码在主页获取加入方式
论文地址:https://arxiv.org/pdf/2201.02052.pdf
计算机视觉研究院专栏
作者:Edison_G
Few-Shot目标检测 (FSOD) 是计算机视觉中一个快速发展的领域。
一、前言
Few-Shot目标检测 (FSOD) 是计算机视觉中一个快速发展的领域。它包括查找给定类集的所有出现,每个类只有几个带注释的示例。已经提出了许多方法来应对这一挑战,其中大多数是基于注意力机制的。然而,种类繁多的经典目标检测框架和训练策略使得方法之间的性能比较变得困难。
特别是,对于基于注意力的FSOD方法,比较不同注意力机制对性能的影响是很费力的。
今天分享的研究旨在弥补这一不足。为此,提出了一个灵活的框架,以允许实施文献中可用的大多数注意力技术。为了正确引入这样的框架,首先提供了对现有FSOD方法的详细回顾。然后在框架内重新实现一些不同的注意力机制,并与所有其他固定参数进行比较。
二、背景
FSOD领域正在迅速发展,大多数新论文都提出了一种新的注意力技术。但是,有很多设计选择可以考虑解决FSOD问题。
首先是检测框架(例如Faster R-CNN或YOLO)