一种基于注意力的Few-Shot目标检测统一框架(附论文下载)

本文详述了Few-Shot目标检测(FSOD)领域的进展,尤其是注意力机制的作用。提出了一种统一框架,便于比较不同注意力技术在FSOD中的性能。分析了迁移学习、度量学习和基于注意力的学习方法,并展示了AAF框架如何实现具有竞争力的检测结果。
摘要由CSDN通过智能技术生成

关注并星标

从此不迷路

计算机视觉研究院

61e3e8d0513f68d5c70577b60572b539.gif

c139cd32d9899604ae60e3dca4f13a3c.gif

公众号IDComputerVisionGzq

学习群扫码在主页获取加入方式

论文地址:https://arxiv.org/pdf/2201.02052.pdf

计算机视觉研究院专栏

作者:Edison_G

Few-Shot目标检测 (FSOD) 是计算机视觉中一个快速发展的领域。

一、前言

Few-Shot目标检测 (FSOD) 是计算机视觉中一个快速发展的领域。它包括查找给定类集的所有出现,每个类只有几个带注释的示例。已经提出了许多方法来应对这一挑战,其中大多数是基于注意力机制的。然而,种类繁多的经典目标检测框架和训练策略使得方法之间的性能比较变得困难。

特别是,对于基于注意力的FSOD方法,比较不同注意力机制对性能的影响是很费力的。

今天分享的研究旨在弥补这一不足。为此,提出了一个灵活的框架,以允许实施文献中可用的大多数注意力技术。为了正确引入这样的框架,首先提供了对现有FSOD方法的详细回顾。然后在框架内重新实现一些不同的注意力机制,并与所有其他固定参数进行比较。

二、背景

FSOD领域正在迅速发展,大多数新论文都提出了一种新的注意力技术。但是,有很多设计选择可以考虑解决FSOD问题。

首先是检测框架(例如Faster R-CNN或YOLO)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

计算机视觉研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值