渠道为王:销售渠道建设3部曲 读后感

渠道为王:销售渠道建设3部曲 读后感

渠道为王:销售渠道建设3部曲

作者:影响力中央研究院教材专家组编著

本丛书由影响力训练集团组织十几位专家、几十位学者、上百位培训界精英历经三年时间精心创作,内容注重实战,以解决企业管理实际问题为导向;论述深入浅出,通俗易懂;工具多、方法多、案例多,且经过多轮培训课程使用并经过多次修订,受到各层次管理者的欢迎和好评。本书通过深入剖析渠道结构设计、渠道成员选择、渠道产品线梳理、渠道价格启动、渠道终端铺设、渠道成员管理、渠道物流管理、渠道账款管理及渠道绩效管理等现实问题,为在渠道管理中陷入困扰中的企业提供实战经验和系统解决方案。

渠道为王:销售渠道建设3部曲在线阅读地址

 

渠道为王:销售渠道建设3部曲 读后感 第(1)篇

(一)选择渠道:\n1:寻找和区别市场机会。\n2:了解好分析消费者需求。\n3:挖掘竞争对手的软肋。\n4坚持4 个基本原则(1,畅通(原则把产品尽快,尽好,尽早 通过短路线送达消费者手这里。。2:适度覆盖(按照市场变化,及时对原有的渠道的覆盖能力 做出相对应的调整,勇于尝试新的渠道。3:稳定可控。(一般不轻易更换渠道商保持相应稳定,才能够进一步提高。4:发挥优势)\n(二):谈判思路 \n1识别确定同类竞争性产品 2认别产品特性 3分析产品当前渠道中定位的程度。\n(三):终端铺货6步\n1,建立铺货的组织机构,(渠道铺货管理制度表)2,划分铺货区域。3,为铺货造势(广告先行)。4,制定方案(方案表大岗)。5,二次铺货。6,终端维护抓标杆 立典型\n(四):渠道成员管理心决 \n1:推加拉(1:免费样本,2:津贴推广。3:销售竞赛。4:购货折扣。5:广告折扣。6:销售返利。7:联营推广。8:信息。9:管理\n(五)大客户管理\n1优先保护货源 2调动一切因素提高VIP\n客户的销量3及时给或协助4,保持有计划性的拜访 5共同设计促销方案 6制定适合的奖励政策。7及时准确的掌握VIP客户相关信息8,与座谈式增加感情\n(六)主要客户\n1:努力降低相关成本2:改变收费模式3:开发新的VIP客户或者提高现有VIP客户的销售量\n(七):避免大户成为软肋\n1:尽可能掌握大户的下线网络\n2:监控大户销售网络平均和有效性\n3:制定销售政策时注重过程管理\n4:严格企业内部管理\n5:向经销商收保证金\n(八)渠道冲突的管理方法\n1:渠道冲突是怎么产生的(1:目标不一致。2,渠道成员的任务和权利不明确。3,观点不相同,4决策权差异。5沟通困难,6价格原因\n(九)渠道畅通性评估\n1:渠道功能主体的到位情况\n2:渠道功能的配置情况\n3:渠道的衔接情况\n4:渠道的合作情况\n\n需要做的表格\n1:消费者问题表(完成)\n2:渠道商评估表(完成)(3个准则1,相互认同,2,目标实现。3:产品销售原则。4:形象匹配原则。\n3:渠道商绩效表\n4:营销总监向内看表\n5:渠道商员工绩效评估表(完成)\n6:渠道对产品调查表\n7:制定方案(方案表大岗)\n\n

蜜汁炖鱿鱼读后感(https://m.huibo365.com/show/50139.html)蜜汁炖鱿鱼读后感

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
,发送类别,概率,以及物体在相机坐标系下的xyz.zip目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值