MIT_Linear_Algebra_lec17: 正交基、正交矩阵和施密特正交化

Lecture 17: Orthogonal Matrices and Gram-Schmidt

MIT 公开课:Gilbert Strang《线性代数》课程笔记(汇总


标准正交基

q i T q j = { 1 ( i = j ) 0 ( i ≠ j ) q_i^Tq_j = \left\{\begin{array}{cc} 1 (i = j) \\ 0(i ≠ j) \\ \end{array}\right. qiTqj={1(i=j)0(i̸=j)

正交矩阵

定义

Q是正交矩阵,当它的各个列向量都相互正交的时候。

Q = [ q 1 q 2 q 3 . . . . ] Q = [q_1 q_2 q_3 ....] Q=[q1q2q3....] ( q i 是 列 向 量 q_i 是列向量 qi)

性质

如果Q是正交矩阵,那么

Q T Q = [   q 1 T   q 2 T   . . . . ] [   q 1 q 2 . . . . ] = I Q^TQ = \left[ \begin{matrix} \ q_1^T\\ \ q_2^T\\ \ .... \end{matrix} \right] \left[ \begin{matrix} \ q_1 & q_2 & .... \end{matrix} \right] = I QTQ= q1T q2T ....[ q1q2....]=I(单位矩阵)

如果Q还是方的,那么Q存在可逆矩阵,并且
Q T = Q − 1 Q^T = Q^-1 QT=Q1

正交矩阵的投影矩阵

P是投影到正交矩阵Q的列空间所对应的投影矩阵。

  • 据前几讲,

    P = Q ( Q T Q ) − 1 Q T = Q Q T P = Q(Q^TQ)^-1Q^T = QQ^T P=Q(QTQ)1QT=QQT

    如果Q是方阵,那么 P = I P = I P=I

  • 据前几讲, P 满足 P = P T P = P^T P=PT, P 2 = P P^2 = P P2=P 在这里同样成立

施密特正交化

过程

在这里插入图片描述
如上图,a和b是两个不相互正交的分量。

施密特正交化就是a不动,找到b中与a正交的分量。

  • 方法:
    将b投影到a上,b - 投影分量 = e 就是所要求的。

  • 据前几讲, e = b − ( A T b / A T A ) A e = b - (A^Tb/A^TA)A e=b(ATb/ATA)A, 若要归一化再除以长度

一个例子:
在这里插入图片描述
A 经过施密特正交化变成Q,但是列空间并没有变

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值